Header

Objective Reviews & Commentary - An Engineer's Perspective

July 28, 2011

O2 Design Process

o2 see thruRAISING THE BAR: Last week I introduced my own headphone amp design--the Objective2 (“O2” for short). The goal was to see how much objective performance and audio accuracy I could achieve with about $30 worth of parts. And to raise the bar further, the O2 is a “no excuses” headphone amp suitable for most any headphone and adaptable to most any source—at home or on the go. The first O2 article covered the premise, detailed performance measurements, and comparisons with a few other headphone amps including the Benchmark DAC1 Pre’s headphone output and it’s closest competitor, the AMB Mini3. If you haven’t seen the first O2 article, you might want to at least skim through it before reading this one. The final article covers all the other O2 Details, options, and a detailed circuit description.

I HAD SOME HELP: Some really smart and well respected guys, like Douglas Self, Bob Cordell, Bruno Putzeys, Jan Didden, Walt Jung, Cyril Bateman, Samuel Groner, Siegfried Linkwitz, and others, have done extensive audio hardware research and published their findings. These guys have solid numbers, math, measurements and science on their side. Their published results often have an “Ap” for Audio Precision watermark in the corner indicating they use professional instrumentation. Many have published multiple books, papers, technical articles, etc. Their work has been extensively peer reviewed and has stood the test of time. They’ve found what works best from input circuits to capacitors to grounding schemes. They helped perfect the “wheels” of high quality audio. So, rather than go off and try to re-invent the wheel as many DIY and audiophile designers seem bent on doing, I liberally took advantage of their well proven research. Very few can match their expertise in their respected fields and I’m certainly not going to pretend I can do better. So to all of the guys above: Thank you!

TRUSTING THE EXPERTS: An amazing number of audio designers apparently think they know more about audio performance than the component manufactures (and sometimes the guys in the paragraph above as well). For example, they try to design discrete op amps instead of using IC op amps. Samuel Groner tested two of Audio-GD’s discrete op amps and the results were extremely poor. In his comments he said he couldn’t understand why anyone would want to use them. You can find his impressive PDF op amp distortion paper via Google and read the results for yourself. The “roll your own” approach is something like a guy trying to build his own car from scratch in a shed thinking he can do a better job than the companies who specialize in designing and producing cars. Some audio designers take off the shelf parts, that were carefully optimized by skilled engineers using hundreds of thousands of dollars worth of equipment, and think can make them work better by using them in ways the designers never intended—like forcing certain op amps into Class A operation. It’s like buying a new Porsche, bolting on monster truck tires for more “traction”, and claiming the result is somehow better than what all those clueless Porsche engineers thought was best. The sad thing is, audio performance isn’t as obvious as car handling. And most of these designers lack the equipment to properly measure the results of their often crude efforts. If they did, they would probably realize the overall performance is very likely worse as Samuel Groner has demonstrated.

 


No Worry Audio


worry dbaldinger OSFA: A primary mantra for the O2 was “One Size Fits All” (OSFA). Basically I wanted an amp suitable for most any application. The first article has the details. (drawing:DBaldinger)

ACCURACY: A primary goal was maximum accuracy. The amp should get out of the way and deliver music as the recording engineering intended. That might sound like hype, but it’s mostly an objective engineering exercise to make that happen—not audiophile voodoo magic. Again, the first article goes into this further.

HIGH-END MEETS OBJECTIVITY: A lot of audiophile beliefs have some objective truth behind them. For example, resistors really can sound different. Some are relatively noisy and others don’t follow Ohm’s law very well—their resistance varies with the voltage applied creating distortion. There’s some truth to “burning in” electronics as some capacitors in certain applications perform better over time. Electrolytic capacitors in the signal path sometimes create measurable and audible problems. And if someone claims a coupling capacitor changes the sound, why not measure and analyze the differential signal across the capacitor while the amp is operating playing real music? If there’s nothing much to measure, by Ohm’s law, it can’t change the sound. If there is something there, you’ve found an area to possibly improve. I’ve done that and much more with the O2. Objective measurements help an audio designer focus on the things that matter most.

 


Overall Design Principal


design drawing dbaldingerDIFFERENT APPROACHES: There are many different approaches to designing a headphone amp. It’s useful to know where the O2 fits into the bigger picture of design philosophies (drawing: DBaldinger)

  • Cost (almost) No Object – Some go overboard with ultra-high end parts, exotic topologies (i.e. fully balanced), etc. These designs can end up being very costly as some “boutique” audiophile parts are ridiculously expensive and some of the topologies require 2+ times as many parts. Do they work any better? It’s unfair to generalize but I know lots of the parts and principals that go into overkill designs often have no measurable benefits and fail to survive blind listening comparisons. I’m sure some designs turn out great. And even those that don’t can be impressive works of art to be admired. You can put a Mercedes AMG V8 engine into a riding lawnmower but the result probably belongs behind a rope in a museum rather than trying to mow lawns. In other words, the engineers at Lawn Boy can probably build a better lawn mower than some guy in a shed using Mercedes parts. I go into this more later and it’s one of the key reasons why many Cost no Object designs are flawed—the implementation is at least as important as the parts and cost
  • Latest Ideas – Many in this hobby are used to getting a new phone/PC/iPod/etc. every year or two. An Intel Core i7 is easily faster and better than a Core 2 CPU for example. But that doesn’t translate to analog audio. Some of the best audio op amps are 10+ years old. The only thing analog I can think of that’s really changed in the last decade are “Class-D” power amplifiers. Some DIYers and boutique manufactures “invent” new topologies like 3 channel designs but those too rarely provide any real world improvements and are often a step backwards as I’ve shown. The challenges of implementing an accurate headphone amp were solved a long time ago. The “newer is better” axiom might apply to smartphones, but it doesn’t usually apply here.
  • Design By Ear – A lot of DIY designers, and apparently even some small commercial ones, lack the right test equipment. Some use RMAA but it’s loaded with limitations and problems. So most of them, not wanting to spend five figures on instrumentation, are at least partly designing in the dark. But they creatively argue that’s ”OK” because they depend mostly on their ears. But that’s been proven deeply flawed in multiple ways. Most audiophiles dislike blind listening (as it could undermine a lot of their beliefs and hence is often criticized) so they use what’s known as sighted listening. And along with that comes a strong unavoidable psychological bias that’s hardwired into all our brains. Multiple studies have shown we humans easily hear things that don’t exist. So the “design by ear” crowd are genuinely fooling themselves. NuForce admits to designing this way and their products have had some embarrassing problems as a result. There’s a lot more information and many references on this topic in my Subjective vs Objective article.
  • As Cheap As Possible (but make it look nice) – This is the mantra for a lot of commercial designs being sold. And “cheap” often extends to the R&D time that went into the design or lack thereof. It took Benchmark a few years to develop the first DAC1. But some companies, like Audio-GD, FiiO, etc. crank out new designs every few months. Obviously there’s not a lot of R&D going into each Audio-GD product unless they have an army of design engineers but one guy claims to design all of it. A lot of companies are trying to profit from the “headphone craze” however they can and it shows. Cheaper designs, faster to market, means more profit. This assumes, of course, enough people buy them. And if you’re an advertiser on Head-Fi the odds seem good you’ll have a loyal fan club no matter how bad the product is. Samuel Groner tested a few Audio-GD products, a Head-Fi sponsor, and the measured performance was awful. But they’re still immensely popular among many Head-Fi members who drink the subjective Kool Aid. So while this approach might work, I honestly don’t know how some of the purveyors sleep at night.
  • Purely Objective – This is how most of the mainstream big guys do it—like say Behringer or Sandisk. They survey the competition, come up with detailed specs and requirements to be a bit better than Brand X, and figure out how to make a product that meets all the goals yet can sell for less. It’s not sexy but it’s a formula that works. Unlike in the audiophile world, their products usually do meet the claimed specs and consumers at least get what they pay for.
  • Harmless Excess – This is my philosophy. When it can’t hurt, and the cost is low, I’ll throw in an audiophile tweak here, a better part there, etc. Douglas Self and others have shown in many applications polypropylene capacitors don’t measure or sound different than similarly constructed polyester caps. But if the the two types are close in price, I’ll go with with the audiophile preferred polypropylene. And I do the same with performance goals. A lot of studies claim you can get away with 0.05% distortion at least everywhere but the midrange. But if I can keep everything to 0.009% or better across the board, without other compromises, it provides extra peace of mind. Those are just two examples.

ISN’T LISTENING MORE IMPORTANT THAN MEASUREMENTS? I think both are important. And that’s why, for the first O2 article, I conducted blind listening tests comparing the O2 to the well reviewed Benchmark DAC1’s headphone amp. It’s best to make all the right measurements and do lots of listening. If you want the listening to be unbiased, you have to do it blind. This has been demonstrated dozens of times.

CAN DIY BE BETTER? I think it can but I suspect it rarely is. Someone who really knows what they’re doing can certainly beat the misguided “Design By Ear” and profit hungry “Cheap as Possible” guys. The “Purely Objective” camp is a bit more challenging and depends on the product, price, etc. Can I beat Behringer’s current headphone amps? Yes. But that’s because they’re designed for musicians monitoring a mix while playing live which isn’t a terribly critical application. If Behringer made an audiophile-grade headphone amp that would be a bigger challenge. And it’s even harder to beat a company like Benchmark, Violectric, or Grace Designs as they’re much less concerned with shaving every penny out of the design and they’re very good at audio design. It’s all they do. In general, those engineers with their knowledge and equipment can turn out a better product with inexpensive mainstream parts than nearly any DIY designer can manage in his basement with RMAA no matter what parts the DIY guy uses. I know that probably sounds harsh to lots of DIYers in their basements, but in my experience, it’s just reality. They often have no idea how poorly their designs perform in some areas.

 


Designer Components


op amp chipsDESIGNER COMPONENTS: Some audiophiles are “component snobs”. Someone once told me the Benchmark DAC1 isn’t worth considering because its Alps volume control only costs a few dollars. But, being objective, the DAC1 has great crosstalk performance (a weakness of some volume controls), good channel balance tracking, the volume control feels solid, turns smoothly, and doesn’t make any audible noise when turned. So what exactly is wrong with the volume control? The answer: Nothing significant. But some think you’re supposed to spend way more to get those hidden designer labels. They can go enjoy their latest issue of the Robb Report. They’re after something very different than simply getting the most accurate sound and the O2 isn’t their kind of amp.

DESIGNER PARTS GONE WRONG: I tested a commercial headphone DAC with a fashionable trendy DAC chip and op amp in it. The PC board layout looks fancy with everything arranged neatly in rows (always a bad sign—more on that later). But whoever designed it apparently couldn’t be bothered to read (or perhaps understand) the datasheet for the DAC. The oversampling digital filter in the DAC chip—a very critical aspect of a DAC—defaults to 24/192. But as a USB DAC it runs at 16/44. Because the filtering is all wrong high frequency content in music creates alias artifacts that are “mirrored” down into the audio band. It measures poorly on the dScope and I’m pretty sure you can hear all the extra high frequency garbage. A typical Head-Fi subjectivist might buy this DAC, hear the extra high frequency crud, decide the added HF content is newfound musical “detail”, and give the half baked DAC a glowing review on Head-Fi. Others run out and buy one and, courtesy of subjective bias, hear what the first reviewer described. Next thing you know the Half-Baked DAC Company becomes a Head-Fi sponsor, and well, you can see where this is going. But the real crime is whoever designed it either never properly measured it, or if they did, they didn’t care they got it wrong. But hey, it looks nice and uses all the right fashionable components. That’s what matters most, right?

OP AMP ROLLING: I’ve written two follow up articles regarding testing op amps for the O2. The results are rather surprising! See: Op Amp Myths and Op Amp Measurements.

DESIGNER COMPONENT CHALLENGE: Some claim specs alone don’t tell you how something like an op amp will sound. I believe if two op amps meet clear some basic measurement criteria, they will sound so similar it’s next to impossible to tell them apart. Anyone’s who’s skeptical might be interested in my Op Amp Blind Listening Challenge.

IMPLEMENTATION IS EVERYTHING: Like the DAC mentioned above, I’ve seen all sorts of products that use the right parts but got the details wrong and don’t work very well. Just routing a single ground signal wrong on the PC board can seriously harm performance. I’ve seen designs that measure great on RMAA but are simultaneously oscillating at RF frequencies. The O2 demonstrates proper implementation can yield genuinely excellent performance without using any designer or expensive parts. Some of the O2’s measurements are pushing the limits of even my dScope audio analyzer.

 


Requirements


requirements ivan walshHEADPHONE AMP DESIGN 101: For those interested, the rest of this article discusses what goes into designing a headphone amp, some of the trade-offs, and how the steps were applied to the O2. I also bust, or at least dent, a few myths here and there. If you just want to build an O2, it’s not required reading. But if you’re interested in learning more about what makes a good headphone amp, and specifically why the O2 ended up the way it did, it’s worth checking out. And if you consider yourself a DIY or commercial audio designer it might be genuinely useful.

STEP 1 REQUIREMENTS: It’s considered good engineering practice to start with fairly detailed requirements. Without decent requirements you don’t know where you’re doing, it’s harder to keep your eye on the ball, you end up wasting a lot of time, and it’s harder to know when you’re done and if you even got it right.

1-1 BASIC REQUIREMENTS:

  • As much of a “One-Size-Fits-All” (OSFA) design as reasonably possible
  • Performance as accurate as possible for the best sound quality (see the first O2 article)
  • Portable (rechargeable battery) and desktop (AC line) operation
  • Reasonably small portable size to fit an inexpensive off-the-shelf enclosure
  • 7 hours minimum battery life with a 20+ hour low power version
  • Brief short circuit protection
  • No risks to headphones with power up/down, low batteries, etc.
  • Switchable gain (2 gain modes)
  • Power LED
  • DIY friendly design with no surface mount components
  • Reproducible: No critical components, matched parts, critical construction techniques, etc.
  • As many components available from a single vendor as possible to save shipping costs
  • As low cost as possible while meeting all other requirements

1-2 WHAT HEADPHONES? Obviously a headphone amp is to drive headphones. But which headphones? In keeping with the OSFA requirement, I wanted to find close to the “worst case” headphones possible. After quite a bit of research it seems the 38 ohm planar HiFiMan HE-4/HE-5LE and 50 ohm HE-6 are especially tough cans that need lots of current. They’re the kind of headphones that make tube amps run and hide in the closet. And for needing lots of voltage, the Beyer DT880-600 needs the most of voltage of any dynamic/planar cans I could find. For wild impedance swings and ultra high sensitivity my Ultimate Ears Super Fi Pro 5s and Etymotic ER-4s help round out the assortment.

1-3 HOW LOUD? Music with a wide dynamic range is the most challenging to play loud because the peaks are much louder than the average level. Such music may not seem loud but the peaks can be seriously challenging for your audio hardware. For such music to approach live levels, you need to cleanly reproduce peaks of 110 dB SPL. If you want to know where that number comes from, see More Power?

1-4 THE CALCULATIONS: To start with a well known example, the Sennheiser HD650 is rated at 103 dB at 1 V RMS input into 300 ohms.The HD650 needs 2.2 Vrms to hit 110 dB SPL. The math can be found in the More Power article. 2.2 Vrms is about the limit of say the Mini3. And, not coincidentally, most find the Mini3 gets loud enough with the HD650s—but just loud enough So this provides some correlation that 110 dB, and this approach, seem to really work in the real world. Now to apply it to our two worst case cans:

  • HiFiMan HE-4/5 – They’re rated 87 dB SPL at 1 mW and 38 ohms. To drive them to realistic peaks of 110 dB SPL they need a whopping 200 mW (enough to fry some headphones). That’s about 2.8 V RMS and a peak current of 104 mA per channel in 38 ohms.
  • HiFiMan HE-6 – Rated 83.5 dB SPL at 1 mW at 50 ohms. They need 447 mW to reach 110 dB which is 4.7 V RMS and 133 mA of current. Despite their higher impedance they’re even more power and current hungry than the HE-4/5 above. There’s good reason here for tube amps, and plenty of other amps, to run and hide.
  • Beyer DT880-600 – These need 43 mW at 600 ohms to hit 110 dB which is 5 V RMS. This is way beyond what most portable amps can manage. Even the new FiiO E11 can’t come close nor can the Mini3.
  • Extra Headroom – In the spirit of OSFA, it’s best to have some extra headroom above and beyond the theoretical limits. That way the O2 won’t end up on the ragged edge. Generally 25% is considered enough headroom for voltage and current capability. So 133 mA * 1.25 = 166 mA and 5 V * 1.25 = 6.25 V RMS. I’m sure in the real world there are still a few cans that won’t quite get loud enough, but I’ve tried to find some of the most challenging that are currently in production (the K1000 “ear speakers” don’t count).
  • Noise – Testing shows noise that’s 85 dB below the maximum listening level will usually be inaudible under nearly all conditions. The Ultimate Ears and Shure IEMs hit 110 dB SPL with only about 100 mV of input. 85 dB below that is 5.6 uV or –105 dBv (103 dBu). This would be a noise level of 25 dB SPL with these headphones. See: Noise and Dynamic Range

1-5 AUDIO SPECIFICATIONS: Here are the complete audio specs. This isn’t some watered down list of specs with the bar set conveniently lower than it should be. It’s the real deal. I believe this to be the true point of diminishing returns and amps that can pass all of the following on a real audio analyzer get my seal of approval. Most of these criteria are supported by well respected research and/or are generally accepted guidelines as to the thresholds of audibility. Some thresholds are not black and white so it’s best to error on the side of being conservative (more accurate) and that’s what I’ve done here (many of these are explained a bit more in the first O2 article):

  • Output impedance less than 2 ohms
  • Input impedance >= 10K
  • Frequency response +/- 0.25 dB 20 hz – 20 Khz 400 mV 16-600 Ohms
  • Phase response less than +/- 2 degrees error 100 hz - 20 Khz 16-600 Ohms
  • Absolute phase: Preserved
  • Slew Rate greater than 3 V/uS using 10 Khz square wave near full output 600 Ohms
  • Distortion under 0.01% 20hz – 20 Khz into 16 – 600 ohms from 10 mV – 400 mV RMS
  • Channel separation better than -40 dB @ 16 ohms and –60 dB @ 150 ohms 400 mV RMS
  • Channel balance error less than 1 dB at any setting down to –45 dB below max volume
  • Noise under –105 dBv (103 dBu) unweighted (5.6 uV or -97 dBr referenced to 400 mV)
  • DC offset under 5 mV typical, and ideally, under 20 mV worst case
  • 100% stable with any realistic reactive load from 16 – 600 ohms
  • Transient ringing and overshoot tightly controlled with all realistic headphone loads and 0.01 uF
  • 166 mA per channel, both channels driven, peak current capability at < 1% THD
  • 6.25 volts RMS on AC power at < 1% THD into 150 ohms
  • 4.5 volts RMS on DC power (nominal battery voltage) at < 1% THD into 150 ohms

 


Circuit Design


scope trace powerSTEP 2 CIRCUIT DESIGN: With the above defined here’s how I arrived at the O2’s design:

2-1 DISCRETE, IC OR BOTH? Tubes and single ended designs were ruled out in the previous article as they’re notably less accurate and far more likely to let their presence be known and get in the way of the music. They’re also not battery-friendly. That leaves a push-pull solid state design with 3 main choices:

  • Fully Discrete – Some designers, such as Kevin Gilmore and John Lindsay Hood, prefer fully discrete designs. And Douglas Self has published some truly excellent fully discrete power amps for driving speakers (his “blameless amplifiers”). While such designs can work very well, they require a fair amount of work to get right. And some aspects can be especially tricky—most notably finding the optimal bias level in a Class-AB design and stabilizing the bias over a wide range of device temperatures. PSRR and CMRR typically suffer without hand matching components. High frequency stability can be rather challenging as well. And discrete designs are generally more power hungry than an IC design as the transistors will require more bias for low distortion—not a good thing for battery operation. Discrete designs can also be fairly fussy about components which conflicts with the “easily reproducible” requirement. And, finally, it’s really hard to beat the big IC semiconductor companies that spend millions on R&D. Want proof? Check out Samuel Groner’s Operation Amplifier Distortion paper (Google it) and compare the discrete op amps he tested to the ICs. No contest. The discrete designs fail by a wide margin.
  • Hybrid – There are many headphone amp designs floating around using an op amp to drive a pair of discrete output transistors in each channel such as the AMB M^3. There are many in databooks. But you don’t see many of them fully tested. Basically they suffer most of the same bias and stability issues as described in the paragraph above. Crossover distortion is especially difficult to fully correct with feedback. It helps a lot if they’re class A but that’s not suitable for battery operation. And some are more difficult to stabilize without using output inductors or 10+ ohm series resistors. It can be done, but it’s very difficult for such designs to match an IC with a Class-AB discrete output stage in most areas except current capability.
  • ICs (myth busted) – If you want to compare a 60+ watt chip amp for speakers to say a Doug Self blameless discrete design I’ll put my money on the discrete Self amp. But at headphone levels, it’s a different ball game. You don’t see Doug Self off trying to build a better op amp or buffer IC out of discrete parts. With only a few exceptions ICs are the best way to go. For those who claim not to like the alleged “sound” of op amps they should consider the entire signal chain. Some favorite recordings widely used by audiophiles as demo material were recorded and mixed using hundreds of op amps. The mixers, equalizers, compressors, processors, etc. were all full of op amps. And there are very likely op amps in whatever digital source gear they’re using. So the majority of music is already well steeped in op amp goodness. And there have been plenty of blind tests that support the transparency of op amps. To those who insist op amps sound bad, I say let’s arrange a blind test!

2-2 CLASS-AB OR CLASS-A? Class A amps can have some significant advantages—especially if you’re unable to fully optimize a Class-AB design including the bias operating point. Given the relatively low currents in a headphone amp the main advantage of Class A is getting rid of crossover distortion. But here’s where those IC designers at the semiconductor companies and their expensive R&D labs get to show off. They can nearly always remove crossover distortion from Class-AB designs much better than a discrete designer can. This is partly because it’s far easier to manage the thermal tracking issues when everything is on a single die so the bias point can be very precisely controlled in an IC. They also have tricks at their disposal a discrete designer can only dream about. So, in a nutshell, they can get class A performance from an IC on a class B power budget. It’s the best of both worlds. This is shown in the residual THD measurement from the last article. And for those forcing op amps into Class A that weren’t designed to be operated that way, unless you can fully measure the results of your hack, you may well be making things worse. If It’s not broken it’s usually best not to try and “fix” it—especially if you can’t fully test the result.

2-3 SINGLE OR MULTI STAGE TOPOLOGY? As explained in the Cmoy With Gain and Mini3 articles there are some significant compromises trying to use one stage for both the gain and output stage. It’s like a high performance front wheel drive sports car—few exist because the front wheels have to handle all the steering and power duties which ends up compromising both. So a single stage design was ruled out and a two stage topology is the obvious choice for the following reasons:

  • Lower Distortion – Adding voltage gain requires using less feedback, and less feedback means higher distortion. Most of the distortion in a headphone amp is in the output stage so you want the most feedback possible for that stage which means operating at unity, or nearly unity, gain.
  • Lower Noise – The gain stage is where most of the noise comes from. If the volume control is after the gain stage reducing the volume also reduces the noise with it. In a single stage design, with the volume control at the input, you get all the noise all the time at any volume setting. With the volume control at the input you also amplify the Johnson Noise of the volume control itself which, in many headphone amps, dominates the overall noise. So there are huge noise improvements to having a second stage with the volume control between them. See the O2 noise measurements in the previous article for more details and the proof.
  • Lower DC Offset – The gain stage is where significant DC offset is usually generated. Using two stages allows isolating this DC from the output stage and hence the headphones.
  • Higher Stability – A 2 stage design can be inherently more stable see 2-5 Feedback below.
  • Component Optimization – With two stages the components (ICs) for each stage can be optimized for their task. High current devices that can drive headphones don’t make the best gain stages and vice versa. With two stages no such compromises are required.
  • Controlled Impedances – The first stage provides a known low impedance source for the second stage. This allows the components, like the volume control, coupling caps, bias resistors, etc. to be optimized for maximum performance without worrying about what’s used to drive the amp.
  • Lower Power Consumption – Compared to 3 or more stages, a 2 stage design will generally use less power for longer battery life.

2-4 AC OR DC COUPLED (myth busted)? I know many high-end subjective audiophiles don’t like caps in the signal path but, in reality, their benefits can far outweigh their negatives when you use the right cap properly. Douglas Self, Cyril Bateman, and others, have conducted tests of capacitors and how they affect audio signals. And, lending some truth to the audiophile beliefs, there are circumstances where capacitors cause problems—including electrolytics in the signal path and EQ circuits where caps have a significant AC voltage across them. But a properly sized high quality film coupling capacitor isn’t one of those circumstances. For a cap to do more than simply attenuate the sound by a tiny fraction of a dB, requires a non-linear voltage across it in operation. The isolated inputs of the dScope allow analyzing the voltage across any cap while the amp is operating. And, besides a miniscule bit of linear attenuation (which is expected due to the ESR), the non-linear components are lost in the noise which is a few microvolts. It’s not even remotely close to any threshold of audibility. Proper coupling caps have also been shown transparent in blind and audio differencing tests. So the only negatives are usually cost and space but the benefits are substantial:

  • DC Input Protection – A direct coupled amp like the Mini3 will amplify any DC offset at its input and send that amplified DC straight into the headphones. And, because audiophiles often dislike coupling caps, audiophile and DIY gear (including DACs) are more likely than consumer gear to have significant DC offsets. At 14X gain, just 70 mV of DC at the input would mean 1 full volt of inaudible headphone destroying DC output. Is that risk really worth the zero proven benefits from DC coupling?
  • DC Offset Reduction – As mentioned in 2-3 above, the gain stage generates most of the DC offset. AC coupling keeps it away from the output stage so it never reaches the headphones.
  • Silent Volume Control – DC bias currents through a pot wiper are hard to avoid in a fully DC coupled design. And with bipolar input opamps, it’s usually audible like it is with the Mini3 and FiiO E9. When you change the volume with no signal you hear an obvious “rustling” noise in the headphones. That’s just tacky. It makes it sound like the pot is worn out when it’s just a marginal design that’s to blame.

2-5 LOCAL OR GLOBAL FEEDBACK? With a multi-stage amp you have to decide between global feedback, local feedback or a combination of both. To most easily meet the goals of stability and transient response local feedback was chosen. It has the following advantages:

  • Gain Stage Isolation – Reactive loads create phase shift between the output voltage and output current. Local feedback isolates the phase shift enhancing stability.
  • AC Coupling – Each stage needs DC feedback to operate. So an amp using global feedback must be fully DC coupled. That prohibits using AC coupling between the stages which has other advantages (see 2-3 and 2-4 above).
  • Volume Control – Global feedback generally requires the volume control be outside the feedback loop. This has significant noise consequences as discussed in 2-3 above.

2-6 DC SERVO? Does the design need a DC servo? Using a servo lets the amp be fully DC coupled without worrying about the offset voltage. But servos require power and this is a portable amp where battery life is important. Servos are generally more applicable to larger discrete power amplifiers where they can address compromises with the design of the feedback loop (different AC and DC gains). The O2 doesn’t have these problems to begin with. And the DC offset and frequency response of the O2 are  genuinely excellent without a servo. A servo would just drain the batteries faster with zero benefit, take up board space, make the amp more expensive and add complexity.

2-7 POWER SUPPLY VOLTAGE? Before going too far with selecting components (like op amps) it’s good to know the power supply voltage. To achieve 6 - 7 volts RMS output you need about 20 V peak-to-peak. Accounting for the appropriate voltage drops, a +/- 12 volt (24 volt total) power supply should work depending on diode drops, and how close the stages can swing to the rails under load. This is another area where some designers get carried away. Higher supply rails limit your choice of components and create much greater power dissipation (waste heat) in the output stage. Power is a function of the square of voltage. So as the power supply voltage goes up, the thermal losses are exponentially greater and the amplifier is less efficient. You want the voltage just high enough to get the job done and no higher.

2-8 INPUT CIRCUIT? The higher the input impedance the more stray noise pickup you get if the amp is connected to an un-terminated cable or gear that is powered off. And much less than 10K can excessively load the outputs of some DACs, preamps, etc. So 10K was chosen as optimal. An RC filter provides RF protection with a cutoff around 3 Mhz. This is low enough to filter out most RF energy while not creating phase shift in the audio band with even higher impedance sources. Cell phones operate at 800+ Mhz and are the most common source of RF problems. A good input circuit should also have some series resistance to help limit current into the op amp if it’s overloaded and provide greater ESD protection. But the larger the series resistor, the worse the noise performance of the amp so it’s a trade-off.

2-9 GAIN STAGE: It’s an IC-based design so the gain stage will be an op amp. The first choice is what topology? Inverting (shunt feedback) or non-inverting? The inverting stage has some benefits for common mode rejection but it’s at a disadvantage for noise performance which is critical in a OSFA headphone amp. A non-inverting design is also absolute phase correct keeping the purists happier (assuming the output stage is also non-inverting which it is).

2-10 WHICH OP AMP? With a topology defined, which op amp out of the hundreds available is best? The semiconductor websites are the best place to start, then all the datasheets, and ultimately you have to start testing the best candidates in the desired application. A given op amp won’t be specified at the exact gain, impedances, etc. of your circuit so the datasheet can only tell you so much. And testing can reveal other surprises. Doug Self, for example, found the expensive Analog Devices OP275 performed worse than several less expensive options. Nearly two dozen op amps were tested in developing the O2 and I have published two articles on the process:

2-11 VOLUME CONTROL: This is a critical part of a headphone amp and what’s mostly responsible for meeting the channel balance requirement. So it’s worth keeping a few things in mind:

  • Location - See 2-3 above for why the volume control is best positioned between the two stages rather than before the input/gain stage. The main downside to the “volume control in the middle” approach is it’s easier to overload the gain stage which always runs wide open. The O2 has a gain switch to address this problem but it’s something those altering the default gain settings should be aware of. See: Gain Stage Overload. A compromise is a “split gain” design where you divide up the gain between two sections but this requires the output stage, in a 2 stage amp, be capable of gain (many buffers are not) and usually requires additional components taking up board space.
  • No DC - The same high quality film capacitor that provides DC input protection in the O2 also isolates the bias current of the next stage from the volume control rendering it completely silent with no “rustling” noise when the volume is changed. If you put even the tiny DC input bias current of most op amps through a pot wiper—especially if it’s before the gain stage—you’ll get noise in your headphones when you adjust the volume. The Mini3 and FiiO E9 suffer this problem.
  • Channel Balance – All pots have some channel balance error. Due to the logarithmic nature of perceived volume, and the way voltage dividers work, the channel balance error will be greatest at the lowest volume settings. And it’s different for every pot. The dScope has a real time channel balance measurement so you can literally turn the pot and watch the number in dB change in real time. It’s not uncommon for the louder channel to swap back and forth as the pot is trying to average a 0 dB error over its range. The dScope makes it relatively easy to find the worst case imbalance and it’s nearly always in the first 5% of the range. The key is to intelligently set the gain so you avoid using the few few percent of the volume control’s range.
  • Stepped Attenuators – These are great when they’re well implemented. But beware of the eBay versions. All those tiny SMT resistors on a DACT? What are they exactly? Thick film SMT resistors perform poorly for audio. And even thin film SMTs get much worse in smaller sizes. They get more noisy, and more alarming, their voltage coefficient rises dramatically. That means they don’t follow Ohm’s law as well—their resistance literally varies with the voltage applied. That creates distortion as the voltage is constantly changing in an audio amp. And the switch contacts, wipers, etc. in a cheap stepped attenuator are prone to wearing out as they get a lot of use. They’re rather expensive to make properly. So, without detailed measurements with an audio analyzer, I wouldn’t trust an eBay (or other unknown) stepped attenuator.
  • Electronic Pots – Most electronic pots are not well suited for high-end audio. Many run from 3V or 5V single power supplies and the audio signal has to stay in that range. So they have to be capacitor coupled and the audio signal has to be referenced to the midpoint of their power supply. That’s a big problem in a high quality amp. They’re also, at best, limited to about 1.7 V RMS before they severely clip the signal. There are some higher voltage chips and even some with bipolar power supplies but they’re expensive (around $10 each). In most cases you need a microcontroller to run them but a few have pins for up/down buttons. Sometimes they’re built into chip amps (like the one in the FiiO E5 and E7).
  • Choices – Lower values are generally better to reduce the Johnson Noise. But if it’s in the input stage, you have to consider loading on the source gear. I think so many use the Alps RK097 because it's hard to find anything better without spending a lot more. Noble, Panasonic and Bourns makes some similar pots but they’re not better that I know of. There are some interesting motorized options as that’s more typically what the high-end manufactures want. The Alps RK27 "Blue Velvet" pot is a really nice pot. But it's currently only stocked in a 100K value which is way too high for most headphone applications (except tube amps) and it wouldn't fit on the board. There are also cheap RK27 clones around made in China.
  • Taper - Alps makes two slightly different audio tapers for volume control use “3B” and “15A”. The 3B taper is at 50% (-6 dB) at half volume. The 15A taper has a more gentle taper up to 70% and then it becomes more steep. If you listen mostly at lower volumes the 15A taper is likely the better choice. If you listen often close to full volume, the 3B might be better.

2-12 OUTPUT BUFFER CHIP? I considered a lot of options for the output stage. A dedicated high current buffer seems like an obvious choice and here are the main options:

  • National LME49600 - This part performs very well. But it’s only available in a surface mount package, it’s relatively expensive, and worst of all, it’s too power hungry for a battery operated design. And, because it has no gain, it doesn’t work with the chosen 2-stage topology here without giving up several other things (especially noise performance and potentially stability). See the BUF634 below for more.
  • Linear Tech LT1010 – This is a fairly old part and only is rated for 150 mA of current which is below the 166 mA spec. It also has relatively high quiescent current and several specs are not as good as the 49600 above. It suffers the same topology issue as the 49600.
  • TI BUF634 – This is available in a TO220-5 through-hole package, and it has a lower power mode, but they’re over $12 each at Mouser and there’s still no voltage gain so you can’t use local feedback. Running it without feedback creates excess distortion. And using global feedback creates stability issues and requires a DC coupled design with the volume control at the input rather than between the stages. That creates DC offset issues—especially at higher gains—and far more noise for all the reasons already mentioned. So to properly use the BUF634 in this design, you need a third op amp stage to provide the feedback for the buffer. And if you use global feedback you may need a DC servo. And either one would help kill the battery life. Not to mention there’s not enough space on the small PCB or either option. Plus, just the required pair of BUF634s would cost more than all the other parts on the board combined.
  • TI TPA6120 – This has been a popular part I suspect partly because it’s much cheaper per channel than the above 3 choices. But as I documented in my FiiO E9 and DIY QRV09 reviews, TI specifies at least a 10 ohm output impedance and it has seriously high distortion at low frequencies. Plus it’s nearly impossible to properly solder (it’s surface mount with a hidden heat sink pad). It’s also power hungry with high quiescent current. It can, however, be configured for voltage gain and local feedback.

2-13 OUTPUT STAGE CHIP AMP? I looked at several “chip amps” designed to drive headphones and I didn’t find any that met the requirements. Most are designed for low voltage operation from around 3 – 5 volts. I also looked at “chip amps” made to drive speakers as they have higher voltage capability. But the only ones I found with suitably low quiescent current for battery operation have relatively poor performance specifications as they’re designed for lo-fi portable audio gear. So much for chip amps.

2-14 OUTPUT STAGE OP AMP? By process of elimination (discrete designs were ruled out earlier) the choice is down to an op amp. But which one? I scoured all the semiconductor websites looking for high current output, low distortion, through hole packaged, 24+ volt power, low distortion, op amps, and came up with only a few parts that even came close to meeting most of the criteria. Here’s the breakdown:

  • Analog Devices AD8397 – The 8397 is is used in some “fashionable” headphone amps like the new FiiO E11 and the AMB Mini3. The good news is it can manage around 300 mA of peak current which is impressive. It will also (barely) run from a +/- 12 volt supply to meet the voltage swing requirement. The bad news is it’s surface mount only which makes it impossible to directly socket and opens up lots of DIY issues. The AD8397 can be pre-mounted to a SOIC-to-DIP8 adapter and used that way but that makes an already expensive ($6.50) op amp more expensive and decreases its already marginal stability. Because this op amp is much faster than it needs to be for audio use it’s far harder to properly stabilize. AMB documented having problems with it and being unable to get it to work at supply voltages higher than the +/- 4.5 volts in the Mini3. There are quite a few stern warnings in the datasheet. It’s also not short circuit protected and known for blowing up if it’s even slightly abused. So it needs some form of protection—usually series output resistance which compromises the performance. It’s also rather dissipation challenged in this application. Both channels in a single SOIC8 package with peak currents of 166 mA and a 24 volt power supply will far exceed the dissipation limits. So it’s off the list.
  • TI Burr Brown OPA551/2 – These single op amps were my first choice as they look good on paper, are rated for 200 mA of current, have high open loop gain, and even some cool features like thermal shutdown. In testing, however, they proved to be something like the AD8397—not quite as bad but still high strung. Admittedly my prototype board wasn’t optimal but the OPA551 didn’t like reactive loads without using output inductors or substantial series resistance. You can get clever with the feedback to presumably compensate for capacitive loads but it kind of works against the OSFA mantra as it’s hard to optimize it for all possible loads without using an output inductor. The very high current limit of 380 mA is also less than optimal. Finally, they’re relatively expensive at $5 each and you need two of them.
  • TI TLE2062 – This is an interesting part that’s specified into loads as low as 100 ohms—headphone territory. The quiescent current is less than 0.5 mA per amplifier section which is great for battery operation. Amazingly, despite the lower power, the slew rate is more than fast enough. It’s also rated at 80 mA max which is far higher than most op amps and it’s short circuit protected. But the unity gain bandwidth is less than 2 Mhz which is less than optimal. Likewise the CMRR and open loop gain could be better. The open loop output impedance is also rather high which, in real world use, limits the voltage swing into low impedance loads. Still, this part has some promise as I’ll discuss later.
  • JRC NJM4556 – JRC is an interesting company with its roots in audio and analog. Unlike the big US companies like National, TI, etc. they tend to either offer lower cost versions of existing designs, or they design application-specific analog parts. I suspect the NJM4556 is one of the latter as it’s unique and almost made to order as a headphone op amp. It’s rated at 70 mA of current specified into 150 ohm loads. It was designed for audio use. In the eBay Cmoy it managed around 100 mA peak and overall rather impressive performance. In the same prototype setup as the OPA551 the NJM4556 performed significantly better in several tests and was much more stable. The NJM4556 is the optimal speed for audio use and no faster. This makes it very stable without any fussy special requirements, output inductors, or series resistance required. That’s worth a lot in this application. The one remaining problem is the output current. The 4556’s 70 – 100 mA obviously falls short of the 166 mA requirement. But, the 4556 is a dual op amp with two well matched amps on a single silicon substrate (die). What will it do with both amps in parallel to double the current capability? The answer is, with appropriate measures, it does good things! It produces over 200 mA which approaches the 250 mA of even the LME49066 and BUF634 above. It turns out using one 4556 with paralleled sections for each channel meets all the requirements. I’ve also tried to blow one up with brief short circuits playing music at clipping and so far so good. And you can buy 7 of them for the price of one OPA551. To my knowledge, this is the first time the 4556 has been paralleled for headphone duty and it’s a big reason the O2 can deliver great performance at such a low price.

2-15 OUTPUT STAGE DESIGN – With the 4556 specified, the rest of the output stage needs to be optimized. First, you usually can’t simply connect two op amp outputs in parallel. They may not share the current equally and any difference in offset voltage will significantly increase the quiescent current. Measurements with the dScope demonstrated just 1 ohm of series resistance works nicely with half a dozen different 4556 samples (some from different production lots). These are effectively in parallel so the output impedance is approximately 0.5 ohms which is well under the 2 ohm goal.

2-16 CURRENT LIMITING – It’s important to protect the output stage from at least brief short circuits and current limiting can help a lot. But intelligent current limiting can also help protect the headphones in a OSFA design like the O2. The FiiO E9, for example, can put out over 1 watt into 16 ohms. That’s enough to send many headphones up in smoke and much more than any 16 ohm headphone I’m aware of needs. FiiO’s solution was to toss extra resistors in series with the 3.5mm jack resulting in serious frequency response and damping problems with balanced armature IEMs. A much better solution is active current limiting. This is discussed more in the first O2 article. The end result is the O2 still has more more power than any headphone I know of in the 16 – 32 ohm range should ever need. But it’s only about 1/3 as much as the E9 puts out at 16 ohms which should help save expensive headphones if someone gets careless with the volume, plugs something in with it cranked up, etc. And it does it without 43 ohms (FiiO E9) or even 10 ohms (QRV09) of output resistance. Active current limiting is the solution that makes the most sense. Why don’t more amps use it?

2-17 STABILITY (one myth confirmed) – Audiophiles claim at least some output inductors sound bad and there just might be something to that. I tried at least half a dozen different inductors in the output of the QRV09 trying to get rid of the datasheet mandated 10 ohm resistor for the TPA6120 and it didn’t go well. All the ferrite inductors significantly increased distortion. And trying to use an air core inductor, on that very fast amp, caused instability. Output inductors are common on power amps driving speakers but seem a bit more problematic in this application. Some of them also are relatively large in terms of PC board real estate. For these reasons I wanted the O2 stable into any reasonable load without inductors. The two stage design with local feedback goes a long way towards achieving that by isolating reactive loads from the rest of the amp. Combine that with an output stage that’s not’s better suited as a video amp, the right PC board layout, proper power supply decoupling, what’s described in the next paragraph, and you have a nicely stable amp.

2-18 COMPENSATION - Op amps get complex, literally, when you near the end of their useful bandwidth. There’s complex math involved, complete with imaginary numbers, to calculate their behavior, including things like phase margin in a given circuit. To do it right, you have to take into account stray parasitic capacitance, stray inductance, and more. Those things are difficult to model in calculations or simulations. Despite the fact the O2 uses internally compensated op amps you still have to verify their stability and transient response. In a low gain application, an op amp might still show ringing on square waves due to the phase margin becoming small. The generally preferred solution is to apply additional compensation in the feedback loop. This, in addition to the dominant pole compensation, is used to optimize the transient response and stability. Amplifier circuits that exhibit significant ringing often have dangerously low phase margin. In my experience this can have a negative impact on their sound quality although some have perceived the “different” sound of a ringing amplifier as somehow better. See Op Amp Myths and Op Amp Measurements for more details. The compensation in the O2 was optimized using a very fast ( < 20 nS) rise time square wave and a fast (> 50 Mhz) scope. The resulting –3 dB point of the O2 is around 250 Khz and the phase shift at 10 Khz is less than 1 degree. Tthe slew rate is still in excess of 3 V/uS. Why does anyone need more bandwidth and “speed” for an audio amp? Would you rather it starts oscillating at 500 Khz when your friend plugs his $1500 HD800s into it? Output stages don’t like being RF transmitters and get really hot trying. The heat ultimately makes them fail and the resulting DC could easily destroy the HD800s. Your friend will hate you and your marginally stable amp. Half-baked stability is never good.

private star ground2-19 GROUND TOPOLOGY: Anyone who’s read my Mini3 review, Cmoy review and/or my Virtual Ground article knows I strongly prefer a proper bipolar power supply with a real ground. And it needs to be a star ground as shown at the right where each functional area of the amplifier has its own private path to a single central ground reference. A true zero volt referenced bipolar dual power supply almost always works best in a headphone amp.

2-20 BATTERY POWER SUPPLY: The O2 only needs less than 200 mA DC clipping a sine wave in both channels into 15 ohms. In real world use with music the current is under 60 mA DC total under even difficult conditions. Just considering battery operation for the moment there are several choices:

  • Bipolar DC-DC Converter – This allows using a relatively low voltage battery like a single 3.7 V li-Ion cell, pair of AAs, etc. A DC-DC converter generates dual bipolar supply rails at the desired voltage (+/- 12 volts for the O2). If the battery becomes too low the converter shuts down and the amp shuts off gracefully. But DC-DC converters are expensive and are typically only 50% - 80% efficient when not fully loaded so 20+% of the battery capacity is wasted. They also create substantial electrical and magnetic noise (EMI) that will find its way into the audio circuitry no matter how hard you try to keep it out. You can see an example of this noise on the blue square wave at the end of the FiiO E7 review.
  • Single DC-DC Converter Or Charge Pump – This is a lopsided version of the above solution. Only the negative rail is generated and the battery is used “raw” for the positive rail. For the O2 that would mean at least a 9 volt battery. The FiiO E5 and E7 use a single charge pump built into the output chip amp. The supply has asymmetrical impedances which can degrade performance. So you would be lucky to get 3 hours instead of 7 – 9 hours. Battery life would be rather poor with only 50% of the total battery capacity (watt/hours) plus the losses in the converter. And it may have unpredictable behavior when the battery gets low. The plus is the amp could be smaller.
  • Dual Batteries – A battery is quieter than any power supply. Which helps explain megabuck battery powered phono preamps like the Nova Phonomena. Two batteries are also 100% efficient—all the battery power goes to the amplifier rather having some wasted in a power converter or even more wasted in a virtual ground/third channel. The main downside is the cost and space of two batteries and, more important, possible headphone damage if one battery becomes disconnected or dies first. This issue is addressed in 2-23 below.

2-21 AC POWER SUPPLY: There are several options for the AC power as well:

  • DC Trickle Charge - A cheap solution is to always run the amp from the batteries and simply trickle charge them with a 24 volt DC wall adapter. The batteries would equally divide the DC charge current between them neatly solving the problem of needing two DC supplies from an AC source. The downside is the batteries are required even for AC operation making this a poor solution for a full time desktop amp. And, worse, the power drain exceeds the maximum continuous “float” charge rate for 9 volt Ni-MH batteries so the AC adapter would extend the battery life but the amp would still eventually die playing even while plugged in. Or the current would have to be set high enough to eventually “fry” the batteries if the AC was left connected with the amp turned off. Neither is acceptable.
  • Center Tapped or Dual Transformer – A conventional bipolar power supply is made using either a center tapped (3 wire), dual secondary (4 wire), or two independent AC transformers (like the QRV09). So far so good. The problem is wall transformers with a 3 or 4 wire AC output are extremely rare. So you have to build the power supply from scratch which involves working with hazardous AC line voltages. The supply would also need to be built into a separate enclosure (expensive) or the O2 itself greatly increasing the size for a portable amp. 
  • Dual DC Power Adapter – I’m not aware of any wall adapters with suitable dual DC outputs, but there are table top “brick” power supplies (like most laptops use) with dual outputs. The problem is the decent ones are relatively expensive (around $40+) and are overkill for this application. They’re also switching power supplies intended for digital devices and typically have some noise in their outputs which probably will find its way into the audio circuitry.
  • Single AC/AC Wall Adapter - An inexpensive AC/AC two wire wall transformer can provide a true split supply using half-wave rectification. While half-wave might seem less than ideal, the performance is in the implementation and the advantages are numerous. Wall transformers are already safety agency approved and available for local power/plugs in various countries. They come with standard barrel connectors allowing the use of a small inexpensive power jack on the amp. The amp can operate perfectly without the batteries installed. There’s no high frequency switching “hash” to worry about. All that makes an AC wall transformer the best choice for the O2. Anyone doubting the performance of a half-wave power supply should check out the performance results in the first O2 article including the incredible noise performance. All those measurements (marked “AC”) were using this power supply. It works great!

2-22 BATTERY CHARGING: Again, there are more options:

  • Charge Controller IC – These typically use multi-stage charging with a faster rate until the battery is close to full then switch to a trickle charge. They’re great but the only options for a dual 9 volt bipolar battery set up are expensive and not DIY friendly (surface mount).
  • Constant Current IC – This solution is used in the Mini3. But, it turns out, it’s actually a disadvantage for 9 volt Ni-MH batteries. See the next option.
  • Resistive Taper Charging – The battery specs say you can charge a NiMH battery at 1/20 the battery capacity indefinitely. Higher than that and you’ll cook the battery, and much lower will take forever to charge. That limit is about 10 mA for the O2’s batteries. A resistor can be sized setting the charge current well under that (about 6 - 7 mA) when they’re fully charged which helps prolong the life of the batteries when the amp is left plugged in. But, even better, the charge current in the O2 is proportional to the battery voltage. This speeds charging compared to a constant current source. The maximum current is around 50 mA if the battery is completely dead which is still a safe value. So no constant current limiting IC is required. It’s also dirt cheap and takes up very little board space.

2-23 POWER MANAGEMENT: As mentioned under 2-20, dual batteries present a significant risk. The problem of potential headphone damage has to be addressed. I developed a unique circuit that manages the DC power rails of the amplifier and offers some additional benefits besides DC protection. I’m not aware of anything similar in other headphone amp designs. It serves five purposes:

  • Headphone Low Battery Protection – The circuit shuts the amp down long before the amp can become unstable due to one battery dying before the other. So there’s never any DC at the output.
  • Battery Disconnect Protection – If one battery becomes dislodged the amp will immediately shut down preventing a large DC output. In my development adventures this is a more likely scenario than low batteries. There’s also the chance one battery is not fully connected when you turn on the amp. The circuit prevents the amp from turning on unless it’s safe to do so.
  • Power On Transient Suppression – Controlling the timing of the power rails greatly reduces turn on transients. The power circuit reduces the turn on “click” by approximately a factor of ten.
  • Cell Reversal Protection - 9 volt batteries, with 7 cells, are easily damaged by what’s known as cell reversal if they are discharged much below 1 volt per cell. Without protection the O2 (or a Cmoy) will operate down to battery voltages of under 3 volts. The listener may have no idea the batteries were being over-discharged and permanently harmed. The power management circuit shuts the amp down when the batteries drop much below 1 volt per cell (7 volts each). So users are free to just listen until the amp shuts off. No harm. No foul.
  • Hysteresis – When the amp shuts off due to low batteries the battery voltage will rise because most of the load is removed. A simple circuit would just turn the amp right back on again. And you end up with the O2 doing DJ rap special effects with your tunes. So the circuit is designed to keep the amp off when the batteries are low.

2-24 LOW POWER VERSION: A lot of portable music players these days will play 20 – 40 hours on a battery charge. So one of the O2’s requirements is 20+ hour battery life in a low power version so you can fly from LA to Sydney with ease on a single charge even with a multi-hour layover along the way. Those who want to use the amp on the go, or where there’s no AC power handy, will probably be happier with the low power version. See: Low Power Option

2-25 ENCLOSURE: With most of the amplifier design roughed out, how small can the enclosure be? There are not that many high quality low cost enclosures on the market—especially if you want a metal one. The best I could find was the “BEX Series” by Box Enclosures and the B2-080 was the smallest one that would conceivably hold two 9 volt batteries and the 80-ish components on the O2’s circuit board. The B2-080 is a high quality rigid extruded aluminum case that you could probably drive a car over and it would survive. Plus it’s under $11 with front and rear panels and hardware. It has slots to slip the PC board into so no mounting hardware or modifications are required. There’s also the slightly taller B3-080 that can accommodate the same PC board but has more height to allow extra panel mounted jacks such as a 1/4” headphone jack, RCA input jacks, etc.

2-26 FRONT AND REAR PANELS: While it’s temping to put external components at both the front and back of the amplifier that requires using two of the most expensive single component on the entire Bill of Materials—the custom machined panel. That makes a big difference in the total cost. The B2-080 and B3-080 come with both front and rear panels so if the rear panel is blank, it’s free. So all the controls and jacks are arranged along one side of the PC board. That way only one machined panel is needed (it’s under $17 from Front Panel Express) instead of two. It also allows using deeper custom enclosures without having to worry about anything matching up with the back of the enclosure.

2-27 PC BOARD: The enclosure mandates the PC board be no larger than 100mm x 80mm. This is where things get really, um, “fun”. Figuring out if everything will fit can take many hours or sometimes even days of trying with the PCB layout software. And if it doesn’t fit, you’re forced to either start compromising your design and toss out parts, or you give in and move to a bigger enclosure, a bigger board, and more or less start over. The more cramped a PC board is the harder and more time consuming it is to place and route. For those who have never routed a board, nothing can cross over anything else that’s not supposed to be connected. So it’s like a 2D Rubik’s Cube puzzle to get all the signals where they need to go, especially when you take 2-29 into account.

2-28 CHANGES & ADDITIONS: Just like in software development, hardware is often a moving target. You might get the first prototype built and finally working right and then you or someone else discover it needs to be changed. For the O2 the suggestion was made to add a gain switch. But there wasn’t space. The solution was to get creative and switch to 1/8 watt sized resistors. There are 20-ish resistors in the O2 so that made room for the gain switch but required re-routing the entire board. It also created a new problem I would discover later in 2-31.

2-29 PC BOARD ROUTING: The O2 has nearly 80 components. Where they’re placed and how they’re interconnected is a seriously critical aspect of performance. While you can find lots of info on how to route a tricky HDMI digital video signal, or make a strip-line antenna feed for a WiFi module, there’s surprisingly little info on routing analog audio boards. Even Doug Self hasn’t published much on the topic. It’s much less black and white than most other aspects of audio design and, to be honest, it’s something of an art. It’s very much an acquired skill you can’t master overnight. There’s even an underground blotchy photocopied “manuscript” paper dating back to the 80’s that’s passed on from senior engineer to junior engineer like some kind of secret manual and right of passage. It’s all about the “black magic” of PCB design. I’m seriously not making this up. Here are just some of things that can make a big difference in measured audio performance:

  • shared ground pathGround Routing – As mentioned earlier a star ground is essential. The diagram to the right is what often happens but it’s not how to do it. That oval bit at the bottom is a typical “ground fill” island on a PC board. And within it critical ground currents overlap and interact with each other. That creates distortion and other problems. With a 2 layer board, and a design of any complexity, you will quickly run out of routing options if you try to return every single grounded component to a single point. So you have to know which things can share a ground return and that’s design specific. And you have to plan for anything “off board” that can destroy your best efforts. For example if someone uses non-isolated metal connectors, and panel mounts them,  those grounds you so carefully routed end up connected together elsewhere (via the panel) and you end up with ground loops and/or other serious problems. The Mini3, as another example, has exposed ground “strips” on both sides of the PCB in an attempt to ground the PC board to the enclosure but this creates two giant ground loops through the upper and lower halves of the metal case. An enclosure should always be grounded at a single point and never have ground currents flowing through it.
  • EMI Loops – Think about where the higher currents flow. You want to keep the “loop area” of those currents as small as possible. For example, I’ve seen several boards that more or less route a power supply rail up each edge of the board and the ground up the center. It’s very logical, neat and tidy. But it’s very poor practice for analog audio. All the currents flowing from the rails, through the load, and back to ground are spread wide apart creating a single turn coil or inductor with your entire circuit nestled right in the middle of each “loop” where all the resulting EMI fields are the worst. And even a 3 channel or bridged (balanced) amp doesn’t solve the problem because the return current is to the opposite rail which is still on the other side of the board. It takes some serious thought to imagine all the current paths and the loops they form. Then it’s even more of challenge, especially on a cramped board, to minimize those loops while still being able to route the entire PCB in 2 layers.
  • Inductive Currents – Don’t run high gain input signals parallel to anything with much current flowing. There will be inductive coupling that can (depending on the signals) significantly increase distortion, degrade crosstalk, and worst of all, create instability if it’s out of phase with whatever it’s next to or generates positive feedback to an amp input. Doug Self has examples of 100 times greater distortion and I’ve seen similar results from various half-baked designs.
  • Watch Parasitics – If you dig deep into datasheets and/or application notes, especially for faster parts, you’ll often find some advice on keeping the part stable. One problem can be parasitic capacitance and inductance. Amplifiers hate positive feedback as it turns them into oscillators. Yet I see all sorts of questionable routing where outputs are coupled to positive inputs in ways they never should have been. You may not always want ground fills around the input pins of op amps, for example, as that creates parasitic capacitance that can degrade stability.
  • Use The Reference PCB Design – I know some engineers who work for semiconductor companies. It’s not uncommon for one or more engineers, more or less full time on the project, to spend months getting their reference designs correct. They might spin a half dozen iterations of the PC board and they’re making measurements with hundreds of thousands of dollars worth of instrumentation. Their reference design is essentially the company’s business card for that part. It’s the first thing many potential customers will lay their hands on and evaluate. It’s important it be as correct as reasonably possible so the part makes a good first impression and they get more design wins. Why then do so many DIYers and small commercial designers just ignore these carefully engineered reference designs and screw everything up thinking they somehow know better? This is also blatantly a problem with DIY DACs. Use the reference design as much as possible. If you really think you know better than the guys at National, Analog Devices, TI, Linear Tech, etc. you’re very likely wrong. I’d love to be in the same room when you try to make your case to the guys (or gals) who sweated all the tough details of their reference boards.
  • Forget Aesthetics – It’s apparently hard for some to resist but the optimal layout rarely has everything arranged in neat tidy rows and columns like a spreadsheet. Electrons have no concept of aesthetics but they don’t generally like going further than they need to because someone thought an IC or resistor looked better over there. See the next item.
  • Think Small – It’s tempting to think of copper PCB tracks as nearly “perfect” but they’re not. A four inch trace at a typical width of 15 mils from one side of the O2 to the other is around 0.13 ohms. That may not sound like much, but it can be a lot in some parts of the circuit. Traces also have inductance and capacitance and couple to both components and each other. A little math helps put this in perspective. For the distortion goal of 0.01% at a realistic listening level of 400 mV (my standard reference level) that distortion can be reached with just a single unwanted anything of only 40 microVolts (0.00004 volts or 40 uV). It doesn’t take a lot of ignorance to end up with an extra 40+ uV here and there from a sloppy layout. And before you know it, even using the best op amps and parts on the planet, your design won’t produce anything resembling really low distortion. Moving a single track can change the distortion from 0.005% (-86 dB) to 0.1% (a lousy –60 dB). Really! PCB design is way more important than many realize.
  • Ground Planes vs Floods/Fills – A ground plane, by definition, is uninterrupted. The idea is ground currents will follow the shortest path back to their source. And that generally keeps loop areas very “tight” which is what you want. But if the ground area is interrupted, it’s no longer a plane, and the ground currents likely will have to take long paths around obstacles that interrupt the “plane”. It’s like walking anywhere you want on a football field, versus breaking the same field up into a bunch of little islands surrounded by water with only bridges here and there to get across. It’s entirely different. And it rarely works very well. The random divided areas are more accurately called “floods” or “fills” and they’re what you get when you fill unused areas on the PC board with copper after you have routed all your traces. If you want a real ground plane use a 4 layer board (which are much more expensive—especially in small quantities) and don’t route any signals on the ground plane. Otherwise you have to carefully plan for every ground current and use star grounding practices—floods or not.
  • Never Use Auto-Routers – A low speed digital design will typically at least work if you simply route the power and ground tracks (or set up suitable design rules for them) and turn the software auto-router loose on everything else. But it’s suicide for high quality analog audio work. The auto-router has no concept of what makes an op amp oscillate as just one example.

2-30 COST ENGINEERING: This step is sort of sprinkled throughout the process. But in choosing everything from the topology to the components if you’re designing to a budget you have to keep an eye on the pricing. Nothing is really expensive in this design but with 80 parts it does add up. The most expensive items, especially in low quantities, are the PC board, enclosure, front panel, rechargeable batteries, and the AC wall adapter.

2-31 SPECIFYING COMPONENTS: This gets surprisingly complex if you’re trying to keep the costs down and not compromise the design. Some things to consider:

  • Try To One Stop Shop – Shipping costs can really add up. If you’re forced to buy parts from 5 distributors that’s probably $50+ in total shipping costs right there. The goal here was to get as much as possible from one source and I managed to do get everything that’s on the PC board (which is a complete working amplifier) and the AC wall adapter from Mouser. You can even get the batteries, solder, and tools from them if you want.
  • Try To Combine Values – I won’t name any names but I’ve seen DIY designs with a 1K resistor in series with the LED and a 1.1K resistor in the feedback loop of an op amp and no other 1K resistors in the entire design. Why not use 1.1K for the LED? It will be ever so slightly dimmer. Big deal. There are lots of examples like this where I see similar, but different, non-critical values being specified. It just makes the design more complicated, more likely something won’t be in stock, etc. In the commercial world it also usually costs more money.
  • Look Up Similar Values – As explained earlier, there was a need to switch to mostly 1/8 watt sized resistors due to a lack of space. A few resistors in the O2 are especially critical for noise. But when I tried to find low noise resistors in that size I discovered Mouser only had limited values. And the prices for the best mil-spec ones were $0.30 or $1.19 (same resistor, slightly different resistance value). Often what matters in audio is the two channels be well matched (hence the use of 1% resistors) but the absolute value isn’t that critical. Nobody cares if the input impedance is 10K or 10.1K for example. Mouser might have a big customer that uses huge quantities of the 10.1K value so they can offer a much better price on that value. So there are a few weird looking resistor values in the O2 and that’s why. Same part, way cheaper, no difference in performance. This also happens with many other passive parts like capacitors.
  • Stick To The Big Companies – Distributors like Mouser don’t sell junk like you’ll find on eBay and at smaller outfits like Jameco, etc. They sell what are known as franchised lines which means they’re a top tier distributor for those parts with full factory support from the component manufactures. Most of their customers are making hundreds or thousands of units at a time. And the last thing a distributor wants is for a customer to have to re-work 1000 boards because of some substandard part. Avoid no-name components, surplus, small dealers, and eBay parts if at all possible. Always remember eBay is often used to liquidate reject merchandise. 
  • Passive Components Can Matter – The issue here isn’t so much the brand, but the details. Thick film SMT resistors for example are awful for audio use. Always use thin film. Metal film through hole resistors work much better than carbon film. The ESR of power supply capacitors can vary by a factor of 10X for the same value capacitor but you have to download the datasheets and look it up. Other capacitors can have very significant differences. Doug Self and others have written extensively on this topic. You can’t just use any parts and expect similar performance.
  • Avoid eBay Components – A lot of the components being sold on eBay are rejects that can’t be sold elsewhere. Big companies do incoming inspection on parts, and if they fail, they’re sent back. In China many of the parts that weren’t good enough to even use in kids toys end up on eBay. And many of the audiophile components are fake knock offs. That Alps Blue Velvet pot from a Chinese or Hong Kong vendor? It’s probably not made by Alps.
  • Try To Avoid Single Source Items – Lead times on many parts are horrific right now. Some parts have 52 week lead times. So, more than ever, single source parts may become an impossible roadblock. Sometimes you can’t avoid it but at least try to look for two versions of a component that can work. Like the B2-080 or B3-080 from Box Enclosures both work for the O2. Plus each comes in several colors. So it’s unlikely they’ll all be out of stock even if they are made by only one manufacture.

 


Prototypes and Testing


nwavguy o2 pcb enclosuresSTEP 3 PROTOTYPES: With the above 30+ steps you hopefully have something resembling an initial design. The next step is to turn it into reality!

3-1: SIMULATION: I have multiple simulation tools including some with four figure price tags. All of them are ultimately based on SPICE which dates back to at least the early 80’s if not the 70’s. It’s basically from an era when a computer the size of a living room struggled to do in a day what an iPhone can do in a fraction of a second. Despite its very crude origins, computer simulation is still useful for some things. For example I used it in designing the power management circuit for the O2. But when you’re worried about things like –90 dB vs –70 dB of crosstalk, or 0.007% THD vs 0.07% THD, or 105 dB S/N or –95 dB S/N, simulation falls flat on its face. The reason is implementation. A lot of high-end performance is more about getting the power supply, grounding, PC board layout, decoupling, parasitics, etc. correct. And simulation glosses over most of those or it gets seriously complex trying to model all of them. It’s also really easy to leave things out or otherwise have flaws in the underlying models you’re not even aware of. Simulation can be a useful, but crude, tool for getting in the ballpark. But don’t pretend it represents real world performance.

3-2: DIGITAL VS ANALOG: If your design is say a PIC microprocessor that measures the room temp you just hack together a protoboard and test it out. Digital signals under 5 Mhz or so are fairly tolerant of sloppy implementation. But if it’s a piece of high-end audio gear things are different. You can’t build a headphone amp like the O2 on a piece of perfboard, protoboard, etc. and expect it to work anything like what it’s capable of. Unfortunately, the only way to properly test it is with a properly routed PC board. And that takes a lot of time to design. Getting the board made is usually at least $70+ with shipping and takes at least a week or more. If you want it faster, plan on more like $200.

3-3: ITERATIONS: All that work you put into the first PC board above is usually thrown out the window rather quickly after you build the first prototype. There are often enough changes after you test it you’ll have to significantly modify the design which usually makes all those painstakingly hand routed traces unusable. Sometimes, just for the prototype, you can get out the X-acto knife, cut traces, tack wires on, hang parts off the bottom of the board, etc. to patch things together temporarily. But, ultimately, you have to spin a whole new PCB.

3-4 MECHANICAL ENGINEERING: We electrical engineers sometimes have to put our mechanical engineering hat on. Everything that’s supposed to interface with the front panel has to be mounted on the PC board the correct distance from the edge of the board. If something sticks out too far, or not far enough, it won’t work in the enclosure. You also have to worry about parts interfering with each other, hitting protrusions inside the enclosure, or being too tall. And things like 3.5mm connectors, the power jack, Alps volume pot, power switch, gain switch, battery connections, right angle LED, etc.are unlikely to be in your PCB CAD software library. So their mechanical “footprints” must be defined from scratch. And if you get even one pin or hole wrong by a fraction of a millimeter, the component may not even fit in the board. All these things can also require multiple spins of the board to get correct.

STEP 4 TESTING: The test results for the O2 are shown in the first O2 article. Before those measurements were made, however, there were many similar measurements conducted unveiling problems that needed correcting. Lots of DIY designers, and even some commercial ones, get a design to where they think it sounds good and they “blindly” release it based mainly on their ears. But that’s often a serious mistake. Just ask Schiit Audio and the guy who designed the Half Baked DAC mentioned earlier. If designers run the sort of measurements you’ll find in the first O2 article, they will discover if their design has serious problems. NuForce has been caught with their pants around their ankles multiple times because they failed to make the right measurements. And the AMB MIni3 doesn’t come close to some of its performance claims. Many don’t seem to bother and/or lack the capability to make all the right measurements. Everyone should remember you can’t hear ultrasonic oscillation, headphone damaging DC, and other things that are serious problems and/or red flags. So just because you think something sounds fine doesn’t mean it is fine. And RMAA still leaves a lot of stones unturned.

 


Design Summary


BOTTOM LINE: I’ve tried to document what goes into designing and testing something like the O2. There are many more steps involved than have been covered here. But, hopefully, I’ve at least touched on the highlights. In the bigger picture a headphone amp like the O2 is relatively simple. A headphone DAC, for example, is considerably more involved and a remote controlled pre-amp/USB DAC like is much more involved still. Unless you’re in a position to know you can somehow do better than the experts, including the semiconductor companies and published audio designers (i.e. Self, Cordell, et al.) I would suggest following their proven solutions as closely as possible.

July 21, 2011

O2 Headphone Amp

o2 v11 boardSOUND QUALITY: The O2 is a small unique headphone amp that compares well in listening tests with much more expensive gear. Are you tired of worrying if you’re getting the best sound from your headphones? Does your iPod or Clip+ fall short with your full size cans? Perhaps the portable amps you’ve tried can’t properly drive your AKG K701s? You might want to keep reading.

THE PROBLEM: I go into more details later but if you look at what’s available in headphone amps it’s not ideal. Very few have credible performance measurements, nearly all the portable models lack enough output for many full size headphones, the Cmoy designs are deeply flawed, many have too high of an output impedance, and the amps that get it right are generally seriously expensive.

THE (nearly) PERFECT HEADPHONE AMP: Wouldn’t it be nice to have a headphone amp that was so quiet you could use it with the most sensitive In Ear Monitors but it also had enough power to drive virtually any full size cans including 600 ohm and current hungry planar models? And, while we’re at it, what if the output impedance was low enough you didn’t have to worry about frequency response or bass damping problems? And, for maximum versatility, what if worked at home on AC power or on-the-go from rechargeable batteries? If you combine all of this with audiophile approved sound quality, switchable gain, great measurements, and a reasonable price, you have something very attractive but also highly elusive unless you’re willing to spend lots of money.

 


Objective Pitch


oscilloscope courtest jeff keyzerWHAT MATTERS MOST: Most of us want our gear to get out of the way so we can listen to the music as the recording engineer intended. We don’t want to listen to our headphone amp, we want to listen to the music. And if that’s the goal, the path to getting there can be summed up with one word (photo: Jeff Keyzer):

  • Accuracy - ak-yer-uh-see: “The condition or quality of being true, correct, or exact

THE ROAD TO AUDIO NIRVANA: Accuracy, and hence the best sound quality, in a headphone amp is almost entirely determined by (the non-geeks might want to skip this):

  • Output Impedance – It should be less than 2 ohms to provide the correct bass damping even with 16 ohm headphones and avoid frequency response problems. Output Impedance differences account for most of the variations in sound quality people hear between different headphone amps and sources.
  • Power – Sufficient voltage, current, and gain must be available to drive the desired headphones to realistic levels without strain. Many amps fall short with many headphones.
  • Noise – The amp should not contribute any audible noise in real world use. Most, unfortunately have audible hiss—especially when using sensitive IEMs.
  • Channel Balance – The stereo image should not audibly shift left or right with any realistic volume setting. This is another common problem.
  • Frequency Response – The output should be flat to within +/- 0.1 dB from 20 hz to 20 Khz and not slew rate limited at full power. But many headphone amps, including some fairly big names like Creek and Pro-Ject, use capacitor coupled outputs that roll off the bass into low impedance loads and add distortion. Tube and single ended designs can be even worse.
  • Distortion – All non-linearities (unwanted garbage added by the amp) should be under 0.01% (–80 dB) at least at midrange frequencies where the ear is most sensitive, and worst case, under 0.05% (-66 dB) across the rest of the spectrum when operating with the desired headphones and output levels. Singled-ended and tube amps nearly always fail this by a wide margin as do many conventional designs. Ideally an amp should be under 0.01% across the board.
  • Transient Response & Stability – Ringing and overshoot should be tightly controlled with all realistic headphone loads. I’ve seen several amps get this wrong in their quest for needless excess bandwidth and/or excessive slew rates.
  • Phase response – Less than +/- 2 degrees phase error from 100 hz to 10 Khz assures the best possible imaging and spatial perception.

VERIFIED PERFORMANCE: Unlike 99% of other amps and designs, the O2 design comes with very detailed, and verifiable, performance measurements made using professional instrumentation and industry standards. If you believe in accuracy, and listening to your music instead of your amp, the right measurements help assure you don’t have to worry about the O2 getting in the way of the music.

 


Subjective Pitch


wine glass

PASSION, ART & EMOTION: Music is an emotional art form and some argue music reproduction is also an art. They argue there’s more to it than just numbers and science. And, even in my virtual lab coat with virtual pocket protector, I agree. But I think 99% of the art is at the very end of the signal chain—in this case the headphones. There are massive differences in the sound of different headphones. I’ve written about some of them in my HD650 Review. Much like a vintner leaves their personal signature on the wines they produce, so do headphone designers. There’s no such thing as a perfect headphone. They all measure significantly differently. And they all balance the various trade-offs differently. But in a headphone amp, you can get close enough to perfection to where the differences that remain have been demonstrated as entirely inaudible. The O2 is just such an amplifier. (photo: Kay Weller)

LISTENING TEST: The O2 was stacked up against the well regarded $1600 Benchmark DAC1 Pre in a listening challenge. The DAC1 is something of a favorite in the audiophile headphone community. A lot of subjective critics, and those who have measured it, really love it. So it’s all the more satisfying nobody has yet been able to tell the O2 from the DAC1’s headphone amp. The DAC1 Pre earned Stereophile’s top class A rating in the headphone category, a product of the year award, and countless other accolades. It has been described as “stupefyingly good” and “a revelation”. The headphones used in the comparison include the Sennheiser HD650s, Denon AH-D2000s, Etymotic ER-4s, Ultimate Ears SuperFi Pro 5s, and Beyer DT770s. Collectively they cover a wide range of impedance curves, efficiencies, types and subjective tastes in sound. The Denons and Etys are ruthlessly revealing, the HD650s are incredibly musical, the SuperFis ultra efficient, and the Beyers show off performance in the deepest bass. I hope to conduct more listening comparisons involving the O2 and perhaps even a public challenge or two. In short, I’m willing to back up my claims for the O2. Perhaps an O2 listening challenge is in your future?

PRELIMINARY FEEDBACK: Initial feedback from others has been very positive. As of September 2011 there are at least a half dozen or so O2 amps “in the wild” and feedback has been nearly all positive. One user compared the O2 to the $1000+ AMB beta22 using $1000 Audeze LCD-2 headphones and wasn’t sure he could hear any differences.

WHAT DID YOUR CABLES COST? Those who spent more on their cables than the total cost of the O2 may feel compelled to dislike it. It probably won’t matter the O2 likely outperforms whatever they’re listening to now. I’m sure many will expect more expensive, and more “esoteric”, amps to sound better. And, in the usual biased listening, their brain will likely deceive them into hearing just what they expect to hear. Some will probably brand the O2 as “sterile”, for example, because it measures well so their brain will serve up a “sterile sound” when they listen to it. This is an involuntary response (see the brain link above if you don’t believe me and check out Subjective vs Objective). So if you’re a fan of exotic cables and other expensive esoteric solutions to straightforward problems, you can probably stop reading here as you’ll be biased against the O2 from the start and only hear what you want to hear. The O2 is intended for those open to a more objective approach.

A NOTE TO BLING LOVERS: Clearly some people like bling. What their car looks like, or the name badge on the front, can be more important than how it drives. There are plenty of car, and audio manufactures, catering to such tastes. The O2, in basic form, is very big on performance but not so much on bling. To keep the price as low as possible it’s mostly function over form. DIYers, however, are free to make the O2 look as impressive as they like. They can have their high-bling cake and still feast on tasty performance. Slip the O2 into a fancy enclosure, with a big knob, expensive jacks, or whatever else suits your fancy, and nobody needs to know what’s inside.

 


Going Shopping


shoppingFRUSTRATION: If you look at the headphone amps for sale, nearly all fit into one or more of these categories (photo: FreeAussieStock):

  • Missing Specifications - Very few amps have meaningful specs. Things like power output, frequency response, THD and crosstalk are meaningless if the load isn't specified and it almost never is. The output impedance is also a critical spec but is rarely provided. Vague specs are difficult to verify which likely means the manufacture has something to hide, or in some cases, never even properly tested their product. When such amps are properly tested they usually fall seriously short in one or more areas.
  • Inadequate Output - Lots of amps, especially portable ones just don't have enough power for many headphones. The relatively popular AKG K701 is a perfect example. Most portable amps, even supposedly "high-end" ones like the AMB Mini3, can't properly drive them.
  • High Output Impedance – Lots of otherwise decent amps have output impedances well above the 2 ohm limit. It’s a surprisingly common problem that causes audible frequency response errors and degraded bass performance. See the FiiO E9 review for more and also my Impedance article. Some manufactures raise the output impedance to provide short circuit protection, sometimes for stability reasons, and sometimes to try and mask other design limitations such as low frequency roll off due to capacitor coupled outputs. All the TPA6120 based amps I’m aware of have at least a 10 ohm output impedance (such as the E9 and QRV-09).
  • Flavors of Cmoy – Nearly all variations of Cmoy amps suffer major limitations and/or serious problems. Most use op amps that don’t have anywhere near enough current capability for many headphones. And even into higher impedance headphones their distortion can be severe because they’re still not designed to drive anything less than 600 ohms. The dual battery versions can easily damage headphones with high levels of DC. And the single battery versions typically use very weak rail splitters or virtual grounds that further limit the output current and increase distortion.
  • Single Battery or DC Wall Adapter Designs – To deliver the best performance a headphone amp needs a dual power supply but many of the more reasonably priced amps cut corners in this critical area. Headphone amps using a single battery, and/or DC wall adapter power supply are limited to using a virtual ground with all the compromises that entails, or capacitor coupled outputs which roll off the bass and add distortion, or a DC-DC converter which tends to add noise to the audio signal. While DC-DC can be made to work reasonably well, it’s mostly found in otherwise compromised amps. The other two options are typically much worse.
  • eBay Amp Roulette – Shopping headphone amps on eBay is a minefield of disappointments. A lot of poorly designed amps seem to be “liquidated” on eBay where they’re unlikely to be returned and can be sold anonymously. The Cmoy I tested was a good example—it had no voltage gain. Others have high distortion, poor volume tracking, etc. I’m sure there are some decent amps to be found on eBay but the odds are stacked against you. And eBay is full of knock off products. Even if someone finds a respectable eBay amp, 3 months later it might be gone, badly cloned, or using entirely different parts. This all makes it difficult to recommend most of what’s on eBay.
  • Single Ended and/or Limited NFB Amps – While these designs are hard to justify by any objective criteria, some people apparently like their added distortion, or at least buy into the hype. If you’re after the best accuracy, however, you won't find it with any single-ended amp. These amps are sort of like having someone softly murmuring in the background while you’re listening to your music. They often make their presence known rather than getting out of the way. You don’t just listen to the music, you may also forced to listen to the amp due to their higher output impedance, capacitor coupled outputs, and sometimes alarmingly high levels of distortion.
  • Tube Amps – Tube amps fit in the same category as Single Ended above but usually with even more obvious flaws. Some like them for nostalgic reasons, and some like to endlessly tweak and modify them, try different tubes, etc. But, ultimately, they’re the opposite of higher accuracy. They can get in the way of your music in obvious ways--especially with more challenging headphones.
  • 3 Channel Designs – I’ve shown how the supposed advantages of 3 channel designs are yet another audiophile myth. So far in my testing I’ve only seen disadvantages to 3 channel amps—some rather significant. At best they’re a waste of money and put a lot of unnecessary electronics between you and your music. At their worse they seriously degrade the audio performance. They’re the complete opposite of the monoblock concept and instead sharing lots of distortion inducing circuitry between both channels.
  • Expensive – The reputable headphone amps I know of with real bipolar power supplies, suitably low distortion, low output impedance, proper grounding, enough power, etc. tend to be rather expensive. You can buy a decent brand new laptop computer for less than the least expensive amps I know of that meet the criteria. Violectric has some of the least expensive options I know of that provide detailed performance specifications.

STALE AIR: In my experience most headphone amps (and headphone DACs) fail the accuracy, or cost, criteria above. Many have a 10 ohm or higher output impedance (QRV09, FiiO E9) while others lack enough output for popular headphones (FiiO E5, E7, Mini3) And some have excessive distortion (Mini3, NuForce uDAC-2). Some have poor transient response and/or are borderline unstable (QRV09, Mini3). Amazingly, a $39 Cmoy came closest to the above goals but it still had some serious fatal flaws—especially when configured with typical gain and into low impedance loads.

FRESH AIR: The Objective2 a conventional 2 channel amp, with 2 batteries, hence the “2” in the name. But O2 also represents oxygen, and in some ways, this amp is a breath of fresh air. It has none of the limitations listed above. It simply does a very credible job of disappearing from the signal chain leaving just the music as the recording engineering intended. Some might call it “straight wire with gain”. It’s all about accuracy but not in the usual expensive audiophile overkill sort of way.

 


Motivation


selecting vistaHOW HARD CAN IT BE? As they say on Top Gear: How hard can it be?  Frustrated with commercial offerings that consistently fail with the flaws on the Going Shopping list, I wanted to prove it’s not rocket science to have your cake and eat it too. Unlike Top Gear’s comedic attempts at various challenges, I took a more objective engineering approach to designing my own headphone amp. (photo: anujpradhan.com)

ONE SIZE FITS NEARLY ALL: There are a lot of headphone amps that work well with some headphones but not others. This is especially true for portable amps most of which can’t even drive AKG K701’s properly let alone most of the planar cans. Others have output impedance issues, too much noise for BA IEMs, etc. Rather than take the typical expensive overkill approach, I put on my engineer’s hat and took an objective approach. I established a few worst case hard-to-drive headphones and worked backwards from there (see O2 Design Process). The result is the O2 should comfortably drive most any non-electrostatic headphone your average audiophile would want to use. That includes dynamic, planar/orthodynamic, or balanced armature, from 16 ohms to 600 ohms. The O2 has 2 gain settings to help match it to different sources and headphones. And if your headphones sound better with a higher output impedance, that’s easily accommodated too.

EXOTIC COMPONENT MYTH: The O2 proves you don’t need exotic parts or esoteric circuit designs for best-in-class sound, accuracy and performance. The O2 is a fairly minimalist amp designed around the solid objective goals listed above, not subjective hype or audiophile myths (see: Subjective vs Objective). It doesn’t aim to be “warm” by rolling off the highs, try to be “sweet” by adding a bunch of distortion, or alter the bass via a higher output impedance.

CREDENTIALS CHALLENGED: This article might seem a bit more, um, “enthusiastic” than my usual reviews. And some of that is no doubt personal bias creeping in. But, truth be told, I do have a point to prove. I’ve been attacked for my “lack of credentials” in reviewing other products. It’s funny; when I give something a favorable review my credentials are rarely challenged, but if I’m critical of gear someone owns, I’m suddenly a fraud and can’t be trusted. There’s more on this rather one sided phenomena in the Subjective vs Objective article.

 


An Open Challenge (two of them)


mustang 500MY CRITICS: My critics have said things to the effect of “where’s your amp?” or “what have you designed?” I’ve designed plenty of things, but for various good reasons, they’re not disclosed on this blog. But the O2 is different. It was designed to fill a void in the headphone amp market driven by what I’ve learned about the audiophile headphone community since starting this blog. (photo: Ford Motor Company)

THE OBJECTIVE CHALLENGE: I’ve given my critics what they asked for and hit the ball over the net, so let’s turn the challenge around! Can anyone show me a portable headphone amp that overall objectively performs better for even triple the finished assembled price of the O2? If so, we’ll get someone independent with a real audio analyzer to test both. The O2 should be available for $150 or less fully assembled so I’ll put it up against anything up to $450. May the best amp win!

THE SUBJECTIVE CHALLENGE: Let’s raise the bar even further for all the subjective guys. For any amp that measures sufficiently well into the desired load (reasonably close to the specs outlined in the O2 Design Principals), regardless of cost, I’ll put the O2 up against it with any popular headphones within its drive capabilities. The challenger can pick the other amp, source, music, and headphones. The listening will be done blind using an A/B/X box and the comparison will be recorded on video for publication on YouTube. The test would be administered by an independent third party (I won’t even be present). The results, win or lose, will be published on this blog. And to sweeten the deal still further, if someone beats the O2 in a valid test, I’ll give $500 to the charity of their choice. If they lose, they give $500 to the charity of my choice.

COMPETITION & FAIRNESS: Raising the price/performance bar benefits consumers and that’s all I’m trying to do here. The primary goal of this blog is to get more objective information out there to help those interested better decide how to spend their money on gear. People want to buy things that live up to the manufacture‘s or designer’s claims. I’m trying to encourage manufactures to hopefully publish more and better specs and make sure their products meet those specs when properly measured..

WHERE ARE MANUFACTURE’S MEASUREMENTS? If you’re a manufacture producing a headphone amp, or even a DIY designer promoting your designs, it’s a really good idea to fully measure the performance of any amp to make sure it’s operating correctly, safe for headphones, and performs as intended. If you don’t make the right measurements, you have no idea if you got it right. So if that sort of testing is being done, why do so few manufactures publish any credible test results? It seems you have to spend $650 – $2000 for something like the Benchmark DAC1, Anedio D1, Violectric V90, etc. to get real measurements. If all the other amps perform as well as their creators claim, why can’t they publish some real evidence instead of a couple useless vague “specs”? In my opinion, they’re either not properly tested at all, or the measurements are so poor they don’t want to share them. Neither is very encouraging.

 


Design Highlights


miata

A CASE FOR SIMPLE: Pointless excess is very 2007. Unlike that gold badged Cadillac Escalade that won’t fit in your neighbor’s garage, or some jacked up heatsinked monster headphone amp that looks impressive but falls over when you attempt a tricky corner at speed, the O2 was designed to be lean, mean and perform very well under real world conditions. Think of the O2 as a sort of Mazda MX-5 Miata. The Mazda is a classic design over 20 years old, that’s relatively minimalist, small, light, nimble, well engineered, amazing fun to drive, and very pure. Many find their way onto tracks on the weekend yet serve as a comfortable car for the weekday commute. There’s nothing excessive about it and it’s very reasonably priced for an open roof sports car. The current MX-5 is a lot like the original 1989 model. Mazda has admirably resisted the temptation to mess up near-perfection just trying to be trendy or by adding lots of weight and things people don’t need. It’s the same with the O2. It’s a very pure, honest, small, nimble, amp that is faithful to the music and amazing fun to listen to. And it’s largely based on proven design principals. (photo credit: Agath B)

SIMPLE O2: In the spirit of the MX-5 Miata, the O2 was designed to be as simple as possible. There are no tricky surface mount parts so no special tools or skills are required. To keep shipping costs much lower, and make things easier, all the components except the PCB and enclosure are available from Mouser Electronics in a single order. Most of the parts are very common and nearly all have Mouser substitutes if something is out of stock. There are also part numbers from worldwide distributors like Farnell. The board slips into an inexpensive all aluminum enclosure with no mounting hardware required. All the connectors and openings are along one side and require only round holes in standard drill sizes—no tricky machining required. And, to avoid any metal work completely, just send the supplied file to Front Panel Express for an inexpensive ready made front panel.

TWO BATTERIES BEAT ONE: As explained in my Virtual Grounds article, real grounds work best. The easiest, and most pure, way to a real ground in a portable headphone amp is to use two batteries. It makes the amp a bit bigger, but the single battery options are generally much less attractive and the reviews on this website back that up.

LOW BATTERY HEADPHONE PROTECTION: A significant problem with dual battery designs is what happens if one battery dies first or becomes disconnected. Under those conditions the amp could destroy your headphones with DC. The O2 uses, as far as I know, a novel approach to solving this problem. It shuts the entire amplifier down when either or both batteries start to get low or if one battery becomes disconnected. This not only prevents harmful DC at the output, it also helps protect the rechargeable batteries from being damaged by cell reversal. So with the O2 there’s zero worry about the batteries. You can safely listen until it shuts itself off.

GAIN SWITCH (added 7/24): By popular demand, the O2 now sports a front panel gain switch. This allows more optimal use with different sources and headphones of widely different sensitivities. So you can use your IEMs on the go and your power hungry big cans at home with a flick of a switch. It’s part of the One-Size-Fits-All philosophy.

DESKTOP OR PORTABLE? The default configuration of the O2 is to be as small as possible. This means 3.5 mm mini jacks, everything mounted to the PC board (nothing panel mounted), and using the enclosure shown in the photos. However, for those who want a desktop amp, you can use the next taller case (same width and depth) and the PC board slides in with room to add high quality desktop 1/4” panel-mounted jacks. See: Enclosure Options

 


The Project


flip chart jwygDIY OR COMMERCIAL? For now the O2 is a DIY project. But see the O2 Details Resources for various options, including fully assembled versions, to get one. And if you’re into DIY, you know the magic of listening to something you made with your own hands. The O2 can provide that magic. (photo: jwyg)

OPEN SOURCE HARDWARE: I don’t want to make any money from the O2. Ever. Like this blog, it’s free and here for those who want it. There are no ads, sponsors, hidden agendas, or online stores. I’m making the O2 design available to everyone under a Creative Commons License.

Creative Commons License This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.

THE ARTICLES: This is the first article in a series of three large articles. here’s lot more in the later two articles:

  • O2 Design Process – This article covers the design methodology from setting the original goals and requirements through to arriving at more or less the final design.
  • O2 Details – This covers everything else including non-DIY options, where to get parts, tips for construction, build options, etc.
  • O2 Summary – This is a summary to the other articles and more.
  • O2 Op Amp Measurements – Some of the op amp research that went into the O2

 


The (only slightly biased) Review


o2 hd650 dscopeUSABILITY: The O2 works pretty much like you’d expect. The batteries are charging any time it’s plugged into AC power--even while using it. It barely gets warm on AC power and not at all on battery. There’s an audible “click” at turn on (most noticeable with sensitive IEMs) and a soft “thump” on power down.

HISS & NOISE: You can’t hear any. Seriously. Even with my ultra sensitive Ultimate Ears SuperFi Pro IEMs, in the quietest room the house, at any volume setting, I couldn’t hear any noise from the O2 itself. Any noise you hear with the O2 will be from the source or an open circuit cable connected to the input. Unlike several other other amps, when you change the volume setting there’s zero noise in the headphones—even with nothing playing.

POWER SOURCE: To geek out for a moment. An often unappreciated parameter of audio circuits is PSRR—Power Supply Rejection Ratio. It’s basically the ability of the circuitry to reject noise, ripple and variations on the power supply. In a lot of discrete designs PSRR is relatively poor and it’s really awful in most single-ended amps. That makes those designs sensitive to even small amounts of noise or variations on their power supply. By comparison, you can listen to the O2 even at full volume on the high gain setting, and attach or disconnect the AC power and there’s zero noise in the headphones. The entire power supply is abruptly jumping up and down by 30% and it’s inaudible! Try that on a single-ended zero feedback and you might damage your headphones the transient at the output will be so large.

BREAK IN: Unlike typical consumer gear, and amps with capacitor coupled outputs, the O2 has no electrolytic caps in the signal path. Electrolytics, in some circumstances, benefit from being powered up a while but that’s not an issue here. So the O2 doesn’t need break-in, warm up, etc. Unlike many fully discrete designs, it’s optimally biased at any sane temperature and the IC’s quickly settle down to their ideal operating points in under a minute.

SUBJECTIVE LISTENING: The O2 is genuinely effortless, totally silent, very spacious, and never breaks a sweat with any headphones I’ve tried. It also works well with any source I’ve tried.

SUBJECTIVE COMPARISONS: I’m more than a little biased, so that’s why I broke out the blind testing gear. And, as near as I and a few others can tell so far, the O2 sounds so similar to the well regarded Benchmark DAC1 Pre’s headphone amp we can’t tell them apart. See The Subjectivist Pitch above. I also believe those currently listening to amps with significant problems, be it higher output impedance, high distortion, audible noise, insufficient power, etc, might be smiling if they try an O2. I’m looking forward to more blind tests.

BATTERY LIFE: The normal version tested here will run 7 - 9 hours and the low power version will roughly match or beat most portable players at 20 - 30 hours depending on the headphones, music, and volume. See: Low Power Version

MEASUREMENT SUMMARY: The most similar portable DIY amp I know of to compare the O2 against is the AMB Mini3 and the O2 outperforms the Mini3 on every test below. Even up against desktop-only amps, like the QRV09 and FiiO E9, the O2 does very well. Most DIY designs have no test results at all or were tested with a soundcard and the many limitations of RMAA. If you read some of my other reviews, you’ll find those RMAA numbers and claimed specs have sometimes proven to be wildly optimistic. I encourage others to verify the O2’s performance. Here’s a summary and comparison and there’s far more detailed results and comparisons in the Tech Section below:

Measurement O2 QRV09 FiiO E9 AMB Mini3
Frequency Response +/- 0.1 dB Excellent +/- 0.1 dB Excellent +/- 0.1 dB Excellent +/- 0.1 dB Excellent
THD 1 Khz 150 Ohms 0.0016% Excellent 0.002% Excellent 0.005% Excellent 0.002% Excellent
THD 1 Khz 15 Ohms 0.0023% Excellent 0.022% Good 0.037% Good 0.017% Good
THD 20 hz 15 Ohms 0.0023% Excellent 0.07% Good 0.05% Good 0.01% Very Good
THD 20 Khz 15 Ohms 0.010% Excellent 0.02% Very Good 0.003% Excellent 0.45% Poor
IMD CCIF 15 Ohms 0.001% Excellent 0.02% Good 0.05% Good 0.043% Fair (2)
IMD SMPTE 0.002% Excellent 0.0015% Excellent 0.002% Excellent 0.009% Very Good
Noise (ref 400 mV) -105 dB Excellent N/A (1) -88 dB Fair -94 dB Excellent
Max Output 15 Ohms 337 mW Excellent 450 mW Excellent 1067 mW Excellent 104 mW Excellent
Max Output 33 Ohms 613 mW Excellent 640 mW Excellent 883 mW Excellent 98 mW Fair
Max Output 150 Ohms 355 mW Excellent 345 mW Excellent 317 mW Excellent 38 mW Fair
Output Impedance 0.54 Ohms Excellent 10 Ohms Fair 10 Ohms Fair 0.9 Ohms Very Good
Crosstalk 15 Ohms 65 dB Excellent 67 dB Excellent 63 dB Very Good 40 dB Poor
Channel Balance 0.6 dB Excellent N/A (1) 1.8 dB Fair 1.14 dB Fair
Battery Life ~8 hours / ~30 hours AC Only AC Only ~5 hours
  1. The QRV09 noise and channel balance measurements are not directly comparable, see QRV09 review
  2. Excessive sidebands, see Mini3 review

FIRST CLASS:

  • Excellent measured performance on all tests
  • Indistinguishable from Benchmark DAC1 Pre’s headphone output in sound quality
  • Works well with nearly all headphones from 16 – 600 ohms
  • Very low output impedance for best headphone compatibility
  • Front panel switchable gain for best headphone & source compatibility
  • Completely silent—no audible noise even with ultra efficient IEMs at any volume setting
  • High Output: 7 Volts RMS & 200+ mA peak current
  • Current limiting to help protect low impedance headphones from damage
  • Unique battery rundown protection prevents battery & headphone damage
  • Easier to build with no surface mount components
  • Output impedance can be modified on board as desired (DIY)
  • No volume control “rustling” (unwanted noise when changing volume settings)
  • Optimal star ground and true split bipolar power supply
  • Multi-stage design with local feedback improves noise, distortion and stability
  • Individual output stages for each channel improves performance
  • RF and DC input protection, brief short circuit output protection
  • Quality components: 1% metal film resistors, poly film & low ESR caps, Alps volume control
  • Fast: Slew Rate 3+ times faster than worst case requirement & bandwidth > ~250 Khz
  • Compensated for maximum stability and optimized transient response

ECONOMY:

  • Larger than Mini3, E5, E7, and some other portable amps
  • Only 3.5mm input and output jacks by default
  • Batteries take a while to charge
  • Not waterproof to 50 meters
  • Metal volume knob is an extra cost upgrade
  • Lacks cult status to impress the subjective audio elite

BOTTOM LINE: I think the measurements speak well for the O2’s performance as do the blind listening comparisons to the Benchmark DAC1. The O2 isn’t perfect, but it’s closer to meeting all the goals than anything else I’m aware of for up to several times its price. If there’s any amp I’ve missed, especially a portable one, that can give the O2 a run for its money, please let me know? For those seeking maximum performance for their dollar, the Objective2 is worth considering. And the Creative Commons license opens up commercial possibilities for other people (not me) to profit from it. And if someone accepts my earlier challenge, and does come up with a better amp for the money, then everyone wins. My entire goal was to raise the bar and show what can be done with solid engineering, proper implementation, and cost-optimized components.

WHAT’S NEXT: This article introduces the O2 and documents its performance. I have written a follow up article that addresses the design process while O2 Details covers everything else including links to several other O2 resources and the design documents (schematic, BOM, board layout, etc.). As always, comments and feedback are encouraged.

COMMENTS & FEEDBACK: As I’m banned from Head-Fi I won’t be able to discuss the O2 there. The official threads for this amp are:

  • O2 on diyAudio – This is the best place for the DIY crowd to discuss building the O2, creative enclosures, add-ons, etc.
  • O2 on ABI – AnythingButiPod is a great friendly site and it’s the best place for non-DIYers to discuss the O2. The more hardcore DIY guys are probably better off at diyAudio.

 


Measurements (aka Tech Section)


o2 v11 dscope cables

TECH INTRO: In a normal review I would discuss the design details in this section. For this already long article, to keep things manageable, I’m presenting just the measurements. To provide some context, I’ve made many comparisons to the O2’s closest DIY competitor--the Mini3. There are also a few graphs for the FiiO E9, QRV09, and Benchmark DAC1’s headphone output. All the comparative data makes this section longer than normal but hopefully more interesting and useful.

FREQUENCY RESPONSE: The overall response is +/- 0.07 dB from 10 hz to 48 Khz. Both channels are shown into 150 ohms. The O2 has a DC blocking capacitor to reduce the O2’s own DC offset and prevent DC offset at the input from being amplified which could potentially harm headphones. There’s a very slight, and very inaudible low-frequency roll of –.04 dB at 20 hz. The –3 dB point is just above DC at 1.8hz. The O2’s transient response has been optimized using additional compensation which results in the response being down a trivial 0.01 dB at 48 Khz and a – 3 dB point of about 250 Khz. At full volume, the channel matching is excellent (< 0.005 dB):

O2 AC Both Channels Frequency Response Sweep 5 hz - 48 Khz 400 mV 150 Ohms comments

 

OUTPUT IMPEDANCE: With 400 mV RMS unloaded a 15 ohm load reduces the output to 386 mV giving an output impedance of 0.54 ohms. This is excellent performance and well under my 2 ohm rule of thumb.

NOISE & VOLUME CONTROLS (and some myth busting): One of the big claims for many audiophile op amps is lower noise. The chip manufactures make a big deal about it and audiophiles, not surprisingly, have jumped on the bandwagon. But, in reality, it’s often the Johnson Noise that limits the noise performance of a headphone amp, not the op amps. Johnson Noise is, literally, self generated noise that’s present in any resistor. The larger the resistor value, the more noise you get. Many DIY headphone amp designs have the volume control at the input to the gain stage. And it’s, at the lowest, usually 10,000 ohms. By comparison the O2 has 274 ohms in series with the input. That’s a huge difference in Johnson Noise. The way volume controls work, the noise is typically worst at half volume where you have 5000 ohms in series with the source and 5000 ohms to ground.  So, at typical volume settings, you get a fair amount of Johnson Noise from the volume control that’s amplified by whatever gain your amp has. That noise typically exceeds the op amp’s internal noise. If you put the volume control after the gain stage its Johnson Noise is no longer amplified. And, as a bonus, the volume control at lower settings now attenuates noise from the gain stage. For more, see O2 Circuit Description and Circuit Design.

NEW NOISE REFERENCE: I’ve used 400 mV as my reference level instead of the more typical industry standards of dBV (1 volt RMS) or dBU (775 mV) because a lot of portable gear can’t output anything over 500 mV. But, it’s easy enough to adjust noise figures to different references. So, where applicable, I’m going to to use the industry standard dBV for noise measurements from here forward. To convert dBV to my previous 400 mV dBr values, subtract 8 dB. To convert from 400 mV to dBV just add 8 dB. The dScope reads in dBV directly. It also makes it easier to compare my data to the data published by others.

O2 NOISE: The final version 1.1 O2, using dBV (referenced to 1 V RMS), measures nearly –112 dB unweighted and –115 dB with A-weighting. Referenced to 400 mv that’s –104 dBr and –107 dBr respectively. And note this is at full volume which is the worst case scenario for the O2. This is several dB quieter than even the QRV09 which uses an extremely high end op amp and doesn’t even have a volume control. In fact it’s quieter than any headphone amp I’ve measured:

O2 Battery 2.5X Gain Noise 25 Ohm Source Impedance Volume=100% dBV (ref 1V)

 

 

NOISE AT HALF VOLUME: Most amps, like the Mini3 and E9, have more noise at half volume (due to Johnson Noise) which is a more realistic setting for real world use. The V1.1 O2, however, is actually quieter at half volume. To put these numbers in perspective, referenced to the old 400 mV they’re –105.3 dBr and –108.2 dBr. On the exact same test, at half volume, the Mini3 had nearly 11 dB more noise and measured –94.5 and –97.5 dB. Noise of –113 dB below 1 volt is under 3 microvolts of absolute noise or 0.000003 volts. For more on noise see: Noise and Dynamic Range. The O2 is an extremely quiet headphone amp:

O2 Battery 6.5X Gain Noise 25 Ohm Source Impedance Volume=50% dBV (ref 1V)

 

 

NOISE ON AC POWER: So how does the O2 measure up on AC power? The graph below is the answer—it’s not much different than the battery graphs above:

O2 AC 2.5X Gain Noise 25 Ohm Source Impedance Volume=100% dBV (ref 1V)

 

BENCHMARK DAC1 PRE NOISE: For comparison, here’s the DAC1 at half volume via the analog input referenced to 400 mV so you have to subtract -8 dB and get –108.1 and –113.6 dB. Both about 4 dB more noise than the O2! All the extra noise spikes are due to the digital circuitry, and internal power supply, in the DAC1. I’m sure John Siau and crew at Benchmark Media, however, could match or beat my design if they did a similar analog-only amp with a remote power supply. So this isn’t entirely a fair comparison:Benchmark DAC1 Pre Analog In Headphone Out Noise 150 Ohms Ref 400 mV Volume=50%

 

NOISE MARKETING STYLE: The marketing guys usually reference their noise specs to full output. With the O2 that’s around 7 volts. So here’s the exact same test above referenced to 7 volts. The weighted result approaches the –135 dB ultimate noise limit of the dScope! This test demonstrates the O2’s dynamic range:

O2 AC 2.5X Gain Noise 25 Ohm Source Impedance Volume=50% dBr (ref 7V)

 

 

REAL ENGINEERING vs INTUITIVE DESIGN: Intuitively an amateur designer could easily be excused for believing ultra-low noise expensive op amps are the best way to design a silent amp. But the O2 doesn’t use ultra-anything. This is an example of what I’ve been saying since I started this blog: Implementation is everything and usually far more important than the part number or brand logo on top of the components. The numbers above are a very significant 11 dB better than the Mini3’s more fashionable and more expensive Analog Devices op amp. The difference is in the implementation and design.

THD+N vs OUTPUT & MAX POWER ON AC: At 1 Khz with both channels driven here’s the distortion versus output on AC power into 15, 33, 80, 150 and 600 ohms. At 150 & 600 Ohms the output voltage was essentially the same at about 7.3 volts RMS. And even at about 200 mW of output into any of the loads the distortion is still below about 0.0025%! Maximum power is about 640 mW at 80 ohms. The power limits shown below exceed the power requirements established for the assumed worst case headphones (HiFiMan planars and 600 ohm version of the Beyer DT880):

O2 V11 AC Both Ch 1 Khz 10mV  THD N vs Output Left to Right 15 33 80 150 600 Ohms comments

 

ACTIVE CURRENT LIMITING: Say you’ve had far too much to drink some evening, you’re listening to your expensive low impedance headphones, and a favorite song starts playing. If you’re listening to one of those “over kill” amps, or even the FiiO E9 that can put out 1 watt, you may well be out several hundred dollars when in your drunken enthusiasm, you crank the volume too high. The O2 tries to prevent such accidents with intelligent current limiting. Instead of throwing a big resistor in series with headphone jack, as many amps do ruining the output impedance, current limiting makes a lot more sense. It allows maintaining a near-zero output impedance and still limits power into lower impedance loads. For those who think it compromises sound quality, the O2 measurements speak for themselves as do the blind listening tests. 166 mA was the target goal to drive nearly any headphone and the O2 doesn’t limit until around 200 mA. So in real world use you won’t get anywhere close to triggering the current limiting. It only comes into play to help protect the output stage and headphones from accidents.

THD+N vs OUTPUT & MAX POWER ON BATTERY: Here’s the O2 running on battery power with both channels driven into 15, 33, 80, 150 and 600 ohm loads. Power is still over 500 mW per channel into 33 ohms for those power hungry planar/orthodynamic cans and the distortion is very similar to the AC performance into all loads (note the horizontal scale is different than above). The power into 15 ohms is roughly the same as on AC due to the current limiting. The batteries were at about 80% charge here (9 volts under load) and the O2 manages +/- 7.5 volts into 600 ohms which is respectably close to the rails. This is the best overall performance I’ve seen from any battery powered amp:

O2 V11 Battery Both Ch 1 Khz 10mV  THD N vs Output Left to Right 15 33 80 150 600 Ohms comments

 

O2 THD+N SWEEP vs AMB MINI3: Here’s both amps at 15 and 150 Ohms running on battery power with the Mini3 shown in pink (15 ohms) and white (150 ohms). Note the O2 produces nearly ten times the power into 150 ohms and over triple the power into 15 ohms. The lack of a shared virtual ground helps the O2 both put out more power and do so at much lower distortion. AMB has said the Mini3 is suitable for 16 ohm loads as long as you don’t “overdrive it”. And the site claims the OPA690 virtual ground can handle 190 mA of current. But even going easy on the Mini3, at only 800 mV of output, it has fifty times more distortion than the O2 (0.1% vs 0.002%). This isn’t “overdriving” the Mini3 as 800 mV is a realistic level many portables can achieve without an amp, and results in only 75 mA per channel of peak current per channel or 150 mA total. This is comfortably within the specs for the OPA690 in the Mini3. If you look at the graph below, at any level into either impedance, the Mini3’s virtual ground is helping making things worse instead of better (note this graph starts at zero instead of 10 mv so the extreme left shows more interpolation error):

O2 Battery Both Ch Driven 1 Khz THD N vs Output Yellow-Blue Mini3 Pink-White 15 and 150 Ohms comments

 

THD+N vs FREQUENCY 400 mV: Instead of distortion versus output power above, this is distortion versus frequency across the audio spectrum at a constant 400 mV RMS with the latest V1.1 design. The traces are, top to bottom, 16 (the “16” in the caption is a typo), 33, 80, and 150 ohms. At 150 ohms you can see the distortion is generally extremely low around 0.0009% across most of the band and essentially flat with frequency. 80 ohms is almost identical. At 33 ohms, the distortion is still only about 0.0015% across the band. And into a difficult 15 ohms the distortion is still around 0.003% – 0.004%. The NJM4556 is really showing off here. This is amazing performance for a $0.60 IC into 15 ohms! The THD bandwidth is limited to the audible range (22 Khz) as that’s the industry standard. This causes the traces to drop at the top end where arguably inaudible ultrasonic harmonics are filtered out by the analyzer:O2 V11 Battery 2.5X 400mV THD vs Frequency Top to Bottom 16 32 80 & 150 ohms BW 22 Khz

 

WIDEBAND THD+N SWEEP: Some have asked what happens if you remove the 22 Khz bandwidth limit of the audio analyzer to let the ultrasonic harmonics be included in the measurement. Here’s the above test repeated, at 80 ohms, but at the full bandwidth of the analyzer (192 Khz sampling). The overall distortion is slightly higher as that’s really the higher “noise floor” from the analyzer adding in all the noise above 22 Khz. Still, the distortion barely crosses 0.002% at 20 Khz:

O2 V11 AC 2.5X 400mV THD N vs Frequency 80 Ohms BW 80 Khz

 

THD+N vs FREQUENCY 6.0 Vrms: Ok, the O2 looks good at my standard level of 400 mV for this test, but what about pushing it to nearly the limit at 6 volts RMS? There are not many (any?) headphones under 150 ohms that need that much voltage. Into 150 ohms the O2 is putting out 250 mW per channel or half a watt with both channels. Even at this hefty power level the distortion is still below 0.002% across the entire band:

O2 AC V11 2.5X THD N vs Frequency Both Ch 6.0 Vrms 150 Ohms Vol = 100% (BW 22 Khz)

 

FiiO E9 THD SWEEP COMPARISON: Here’s the O2 vs the FiiO E9.  Into 150 Ohms they’re both good but the O2 has about half the distortion of the TPA6120-based E9 across the entire spectrum. Into 15 ohms the O2 kills the FiiO E9 below about 4 Khz. The O2 is the clear winner here:

O2 AC Both Ch THD N vs Frequency 400 mV (blue red) vs FiiO E9 (yellow green) BW 22 Khz comments

 

BENCHMARK THD COMPARISON: Here’s the Benchmark at only 15 ohms as any higher impedance is about the same. That’s because, at 400 mV, noise dominates the THD+N measurement on the DAC1, not distortion. Regardless, the O2’s performance is very much in the same league with both below 0.003% in either either load across the band:

DAC1 Pre Analog In Headphone THD N vs Freq 15 Ohms Ref 400 mV Vol=100% BW=22 Khz

 

THD+N 150 OHMS WIDE SPECTRUM: Here’s the wideband THD+N measured to 80 Khz, both channels into 150 ohms at 400 mV on AC power. THD+N of 0.0016% is excellent and slightly lower than the expensive op amp in the Mini3 managed. The worst distortion product is below an impressive –108 dB. Note the THD+N is nearly identical in both channels. This indicates the PCB layout is electrically symmetrical. The –115 dB spike at 60 hz is also very inaudible. The readings and spectrum in this test are so similar on AC and battery it’s hard to tell them apart. There’s nothing to fault here:

O2 V11 AC Both Ch 1 Khz THD N 150 Ohms Ref 400 mV RMS Vol=100% THD BW 80 Khz

 

BENCHMARK COMPARISON: Here’s the DAC1 for comparison with the same test as above. It has about twice as much THD+N but most of it is just noise from all the nearby digital circuitry not actual distortion:

DAC1 Pre Analog In Headphone THD Wide Spectrum 150 Ohms 400 mV Vol=100% BW=80 Khz

 

LOW LEVEL THD & THD+N: The THD+N vs output sweeps above make it look like the O2 has lots of distortion at low levels. But that’s not the case. The sweep points are averaged and interpolated. And because the sweep is starting at zero volts where the THD+N is essentially 100% (all noise no signal) it skews the result into looking worse than it really is. Here’s the THD+N and THD readings at the same 1 Khz referenced to the same 400 mV but with the amp only putting out 10 mV to simulate low level listening. Note the THD reading is only 0.0019%. Everything else that goes into the 0.03% THD+N reading is just noise which, relatively, is a much greater portion of the measurement when the signal is this low. This is excellent performance:

O2 AC 1 Khz 10 mV THD & THD N 150 Ohms (ref ~400 mV RMS)

 

THD+N 15 OHMS SPECTRUM: A lot of amps struggle with this test as it’s a much more challenging 15 ohm load. But the O2 aces it with everything well below an impressive –94 dB. The Mini3, in comparison, failed with the 3rd harmonic at about –75 dB. The THD+N and THD readings are nearly the same because the noise floor is so low:

O2 V11 AC 1 Khz THD N 15 Ohms Ref 400 mV RMS Vol=100% THD BW 22 Khz

 

THD RESIDUAL 15 OHMS: The main idea behind power hungry Class-A amps is to get rid of a particularly objectionable form of distortion known as crossover distortion. Crossover distortion shows up in this test as an obvious large spike or “glitch” in the blue waveform where the yellow waveform crosses through zero (see the Mini3 for an example). It’s very common, and sometimes rather severe, in headphone amps that use discrete output transistors unless it’s a true class-A design. This is the best of both worlds. Class-A performance with zero visible crossover distortion on a Class-B power budget even into a challenging 15 ohms and less than 7 uV RMS of distortion residual:

O2 AC 1 Khz THD Residual 15 Ohms Ref 400 mV RMS Vol=100%

 

INPUT OVERLOAD ON BATTERY – Here’s the V1.1 O2 running on batteries at about 80% charge. The battery voltage was 9.2V. At 2.5X gain it can still handle a 2 volt RMS input signal, which is the Redbook standard for home digital audio equipment. On AC power it can handle 2.8 V RMS which is well in excess of the FiiO E9 which overloads at 2.1V input. So even on reasonably charged batteries the O2 is fine on battery power:

O2 V11 2.5X Gain Batt=9.2V 1 Khz 2.0V RMS IN 4.9V RMS OUT THD N 150 Ohms

 

INPUT OVERLOAD ON AC – Here’s the V1.1 O2 running on AC power with 2.9 V RMS in at 2.5X gain and half volume. The uniform distortion products are a sign the input stage is just under clipping but the THD+N is still a respectable 0.0074% and everything is way under the magic –80 dB point:

O2 V11 2.5X Gain AC Pwr 1 Khz 2.9V RMS IN 3.0V Vol=50% RMS OUT THD N 150 Ohms

 

VOLUME CONTROL MYTH BUSTING: While the volume setting can make a difference, mostly with noise measurements, it’s usually not the dominant factor in most amplifier performance tests—especially at 1 Khz or below. Some of my critics argued my Mini3 review was flawed because I used a volume setting of 50%. So here’s the exact same test as earlier, repeated with the volume set to 50% and the input signal raised to get the same 400 mV at the output. The distortion actually went down by an insignificant amount (likely in part due to lower noise). In other words, it’s virtually the same if not better at 50%. Another myth busted:

O2 V11 AC 1 Khz THD N 15 Ohms Ref 400 mV RMS Vol=50% THD BW 22 Khz

 

THD 20 KHZ 150 OHMS: With the volume at 50%, here’s the 20 Khz result measured out to 88 Khz. Note the worst distortion product is about –93 dB. This is excellent performance (the V1.0 and V1.1 boards tested the same):O2 AC 20 Khz THD N Both Ch 150 Ohms Ref 400 mV RMS Vol=50% THD BW 88 Khz

 

THD 20 KHZ 15 OHMS: 15 ohms at 20 Khz with a THD measurement bandwidth out to 88 Khz is genuinely challenging and includes the ultrasonic region. And the O2 still does very well barely staying under the magic –80 dB mark across the board. By comparison, despite the realistic level of only 400 mV, the Mini3 did very poorly on this test with a reading of 0.45%—or 27 times more distortion. The FiiO E7  was also higher at 0.056%. The O2 is edged out here by the QRV09 which rocked this test with 0.003%. The TPA6120 in the QRV09 does a great job at high frequencies into low impedance loads. But, the TPA6120 (also used in the FiiO E9) has other problems as seen earlier in the sweep comparison. There’s also theTI mandated 10 ohm minimum output impedance. The O2 has zero audible problems here (the V1.0 and V1.1 boards tested the same):

O2 AC 20 Khz THD N Both Ch 15 Ohms Ref 400 mV RMS Vol=50% THD BW 88 Khz

 

THD 20 HZ 15 OHMS: I skipped the 150 Ohms 20 hz test as it approached the noise floor of the dScope itself. But at a challenging 15 ohms at least there’s something to see even if it only adds up to 0.0023% THD+N. Everything here is well below –90 dB. For comparison, the QRV09 and E9 di much worse here with about 30 times more distortion than the O2. The Mini3 came in at 0.01%—about 4 times higher. This is excellent performance (the V1.0 and V1.1 boards tested the same):

O2 AC 20 hz THD N Both Ch 15 Ohms Ref 400 mV RMS Vol=50% THD BW 22 Khz

 

IMD CCIF 150 OHMS: Many think this is a more revealing test than simple high frequency THD. Some amps really make a mess of it and create a lot of distortion products within the audible band. Like nearly all my tests, this one is run with both channels driven at 400 mV. As with the other tests, you ideally want everything but the two signals (at 19 Khz and 20 Khz) below –80 dB (or –66 dB depending). The O2 does far better with everything in the audio band below about –102 dB including the sidebands (the V1.0 and V1.1 boards tested the same):

O2 AC IMD CCIF 400 mV 150 Ohms Vol = 50%

 

IMD CCIF 15 OHMS: This is one of the most challenging tests I run. Every single amp and device so far has failed the “-80 dB rule” with something over that level. The Mini3 had a very difficult time with this test as did the uDac-2. Even the TPA6120 QRV09 and FiiO E9 had the 1 Khz component, right where the ear is most sensitive, well over –80 dB. In comparison, the O2 passes this tough test with flying colors. Even the ultrasonic components are below –80 dB (the V1.0 and V1.1 boards tested the same):

O2 AC IMD CCIF 400 mV 15 Ohms Vol = 50%

 

MINI3 IMD CCIF 15 OHMS: To put the above performance in perspective, here’s the Mini3 on the same test, same 400 mV, same load. Notice the sideband that reach almost –50 dB. These are almost certainly audible:

AMB X-Audio Mini3 200 mV Vol=50% CCIF IMD 15 Ohms (ref ~400mV)

 

IMD SMPTE 150 OHMS: Not much to see here. Everything is below about –110 dB:

O2 AC Both Channels IMD SMPTE 400 mV 150 Ohms Vol = 50%

 

IMD SMPTE 15 OHMS: This is also a very good result with everything below –90 dB. The QRV09 and E9 both crossed the –80 dB line on this test and the Mini3’s reading was about 4 times higher (the V1.0 and V1.1 boards tested the same):

O2 AC Both Channels IMD SMPTE 400 mV 15 Ohms Vol = 50%

 

INTERCHANNEL IMD BASELINE: While testing the Mini3 I found its shared virtual ground (“3rd channel”) was causing a lot of problems. I devised a test to show some of these problems more clearly. I operated the measured channel at 1 Khz and the other channel at 300 hz with both at 1 volt into 15 ohms. Even though the combined peak current was within the claimed current capabilities of the shared virtual ground, it created a “forest” of ugly relatively high level distortion products. First, here’s the O2 with one channel driven into 15 ohms at the same 1 volt. This is the baseline and the residual noise figure of –100.5 dB (which excludes the 1 Khz signal and its harmonics) shows there isn’t much else going on (the V1.0 and V1.1 boards tested the same):

O2 AC 1 Khz One Channel Driven Residual (non-THD) Noise 1V 15 Ohms

 

INTERCHANNEL IMD: Here’s the same test but now the other (unseen) channel is also driven to 1 volt into 15 ohms but at 300 hz—a different frequency in each channel. There’s the expected 300 hz signal at –64 dB which is the expected crosstalk into 15 ohms (more on that below). But the important thing to note is the rest of the spectrum isn’t much different than the one above. The residual noise figure, which is the sum of everything not related to the 1 Khz signal, reflects only the expected crosstalk at 300 hz. The two different signals don’t interact in ugly ways via the common virtual ground like they do in the Mini3. There’s virtually no extra non-linearities here. This is important as there are good reasons to believe non-linear interchannel distortion could be much more audible that the usual variety. This is explained more in the Mini3 review and 3 Channel articles. This result is also important to prove a point. I’m still getting messages from people defending 3 channel designs as being objectively better. So there’s a bit of an axe to grind here. The main premise for 3 channel designs is the headphone currents (which are relatively high here at about 94 mA peak per channel) “pollute” the power supply rails and the input ground circuitry. Some have shown scary looking simulations, talked about power supply capacitor ESR, etc. This is a class B amp. So all those non-linear currents should be “polluting” the O2 and causing problems if you buy into the 3 channel argument. But that’s not the case. If the alleged “pollution” were a real world problem there would be a much bigger mess in the graph below. The only significant “leakage” is the linear (not a form of distortion) crosstalk from the other channel and that’s the fault of the headphone jack, not the real ground. With a 4 wire headphone connection it would be more like –95 dB. These results, and everything else I’ve shown, hopefully put the 3 channel myth to rest. It’s based on a false premise that’s best addressed with a proper star ground. And, regardless, the much greater negative side effects of a virtual ground far outweigh any supposed benefits. Here’s yet more evidence (also see the Cmoy review):

O2 AC 1 Khz & 300 hz (other channel) Interchannel IMD 1V 15 Ohms

 

MINI3 INTERCHANNEL IMD COMPARISON: Here’s the exact same test on the Mini3. Note the “forest” of non-linear distortion products created by the virtual ground amp:

AMB X-Audio Mini3 THD N 1 Khz Left 300 hz Right 1 Volt RMS 15 Ohms (ref 1 V)

 

CHANNEL SEPARATION (CROSSTALK): This has been another bone of contention with the 3 channel fans. The claim is a virtual ground makes for lower (better) crosstalk but that’s not what I measured on the Mini3 and in fact it’s also not what basic circuit theory would predict. AMB claims a measured –88 dB crosstalk at 33 ohms for the Mini3. But I’ve provided the math (see the Mini3 review) showing that would require a ground impedance of only 1.3 milliohms (0.0013 ohms) which is, for many reasons, quite impossible. I measured –46 dB at 33 ohms for the Mini3 which has since been verified by a former Mini3 fan. It’s the Mini3’s actual crosstalk and mainly the virtual ground is responsible for the poor result. By comparison, using a real star ground, the O2 measures a much better –72 dB (below) at 33 ohms. And that’s almost entirely caused by the 3.5 mm jack and plug. It would be better than –95 dB (at 1 Khz) using a 4 wire connection. The O2’s crosstalk, top to bottom, at 15, 33, 150 and 600 ohms is shown below. At 1 Khz, with the volume at 100%, the O2 measured about –65 dB, –72 dB, –91 dB and –95 dB respectively. This is similar to the also excellent QRV09 which didn’t even have a volume control. At 600 ohms, above about 5 Khz, you can see other aspects of the design besides the output ground impedance contributing to the crosstalk. This is literally as good as it gets with a typical 3.5 mm jack and plug:

O2 Crosstalk 400 mV 15 (yellow) 33 (green) 150 (blue) & 600 Ohms (red) Reading 1 Khz 150 Ohms

 

CHANNEL SEPARATION (CROSSTALK) VOLUME=50%: Part of the Mini3 crosstalk debate centered around the volume control setting. My critics claimed the Mini3’s crosstalk would have met AMB’s claims at full volume. So to show what effect the volume control has, here’s the O2 at half volume (yellow) and full volume (blue) into 150 ohms: At 1 Khz the volume control degrades the crosstalk only 2.4 dB to –88.9 dB. Note how the performance below 1 Khz is virtually identical. Above 1 Khz the capacitive coupling between the left and right sections of the volume control (and to some degree other parts of the circuit) increasingly affects the measurement. With the Mini3, the crosstalk was poor all the way down to 5 hz. The O2’s crosstalk, at any frequency, is around 20 dB better than Mini3 with both at the same 50% volume setting. So on a completely level playing field, even into a virtual-ground-friendly 150 ohms, at only 400 mV of output, the virtual ground is inferior by a wide margin. It’s an apples-to-apples comparison and I’m not even remotely “overdriving” the Mini3. This is just the advantage of a real ground compared to using an op amp as a common ground. Please see the Mini3 review and comments for the math if you’re still in doubt (the V1.0 and V1.1 boards tested the same):O2 Crosstalk 400 mV 150 Ohms 100% Volume (blue) 50% Volume (yellow) Reading 50% 1 Khz

 

PHASE: The O2 provides correct absolute phase (it does not invert the signal). The phase response may not be as ruler flat as some amps I’ve tested, but that’s by design. The O2 has DC protection and better transient response as a result. It’s off by less than 0.8 degrees at 10 Khz and about the same amount at 100 hz. This means the phase is extremely accurate through the bulk of the audio spectrum containing spatial information. There’s very little spatial information below 100 hz and 5 degrees at 20 hz is still trivial and better than the 8 degrees of the QRV09. The low frequency phase shift is from the –3db point of 1.8 hz using the largest value high quality film capacitor that would fit in the small enclosure rather than an inferior (but higher value) electrolytic. Above 10 Khz the rest of the signal chain, especially the DAC output filter, probably has a much larger phase shift than the O2. The very slight HF shift in the O2 is from the added compensation and transient optimization (-3 dB at ~250 Khz):

O2 AC Phase Response 400 mV 150 Ohms (non-inverting)

 

ADJUSTABLE GAIN: The default low gain setting for the O2 is ~2.5X (~8 dB) for use with typical headphones and/or high output home sources. And at the high gain setting it’s ~6.5X (~16 dB) for low output sources or high impedance headphones needing lots of voltage. See Gain Settings and All About Gain. The graph below shows the final V1.1 O2 at the default gains. You can see there’s only a very slight increase in distortion switching to 6.5X gain part of which is likely just the noise floor:

O2 V11 Battery 1V Out 150 Ohms THD vs Frequency 2.5X Gain (yellow) 6.5X Gain (blue)

 

CHANNEL BALANCE: The O2’s Alps volume pot, which is essentially the same one used in the Benchmark DAC1, tracks impressively well. I usually only measure down to –45 dB (shown in the graph) as below that things tend to get ugly. But here the O2 is still well under 1 dB error even at –55 dB (which is really quiet for any sane gain configuration)! Note this is the “3B” taper which should score worse for low level channel balance. For comparison, the FiiO E9 has 1.8 dB of error at –45 dB:

O2 Channel Balance Full Vol = 0 dB 400 mV 150 Ohms

 

CLIPPING PERFORMANCE: Some amps become unstable when pushed to clipping for many reasons. Some op amps, for example, are prone to phase reversal when clipped where the output violently slams into the opposite supply rail. Other amps exhibit ultrasonic oscillation when clipped. The O2 is completely clean into any load I tried and also exhibits very close to symmetrical clipping. This is one of those tests everyone should always run, and not just with a soundcard “scope”, so you can see any ultrasonic/RF problems. Here the O2 hits +/- 20 volts peak-to-peak at 10 Khz into 600 ohms on AC power on a 100 Mhz scope:

o2 clipped 10 Khz sinewave max output 600 ohms

SQUARE WAVE PERFORMANCE: Here’s a 2 volt p-p 10 Khz square wave into real world Sennheiser CX300 headphones. Note the complete lack of overshoot or ringing and the relatively square edges of the waveform. This is due to the dominant pole compensation being optimized for the best transient response. The little bits of noise on the horizontal parts of the waveform is noise from the 2 GS/sec 8 bit A/D in the scope not the O2:

o2 agilent 10 Khz Sennheiser CX300 2v p-p

CAPACITIVE LOAD STABILITY: Here’s the exact same test as above, but with an added 0.01 uF of capacitance (headphones + capacitor in parallel). Note the rise time is slightly slower but it’s otherwise completely stable with no overshoot or ringing:

o2 agilent 10 Khz Sennheiser CX300 plus cap 2v p-p

SLEW RATE: Here’s a greatly “zoomed in” view of the same 10 Khz square wave but this time into 600 ohms at just under clipping. This is on a different scope that’s useful because it gives the difference in voltage and time for any two arbitrary points on the waveform. In the last column of the measurements at the top you can see between points 1 and 2 on the waveform it covered 12.65 volts in 3.51 uS. This gives a slew rate of 3.6 V/uS. By the industry rule of thumb, the O2 only needs a slew rate of 1.4 V/uS and the spec generously calls out 3 V uS. So, bottom line, this amp will never slew rate limit, even at full output, with any digital music you can feed it. There can be ugly side effects associated with excess slew rate. The megahertz region instability seen on the Mini3 with this same test is likely just such a side effect.o2 10 Khz Square Wave Full Output 600 Ohms Slew Rate comments

SQUARE WAVE RISE TIME: This is essentially the same test as above, same 20 V p-p, same 600 ohms, but on my Agilent scope which does the industry standard risetime calculation using the 10% and 90% points on the waveform. So the signal went from –8 volts to + 8 volts in 4.6 uS which gives a 3.5 V/uS full power slew rate very similar to the 3.6 V/uS measured above:

o2 agilent risetime 600 ohms 20v

 

DC OFFSET: The V1.0 DC offset measures 2.8 mV in one channel and 2.7 mV in the other which is insignificant. The V1.1 board measured 3.0 mV and 3.1 mV.

THE FINE PRINT: Unless otherwise specified all tests are the default configuration at 2.5X gain, with both channels driven into the specified load at 50% volume. Most graphs indicate “AC” or “Batt” documenting the power source used. The WAU16-400 wall adapter was used for the AC tests and Nexcell 200 mAH “EnergyOn” (V1.0) and Tenergy 200 mAH and 250 mAH (V1.1) 8.4 V NiMH batteries were used for the battery tests. Maximum power output in the battery powered tests varies a bit due to battery charge level and the different batteries. The driving source and measurement instrument, unless otherwise noted, was a Prism Sound dScope III running V1.4d software. The dScope’s output impedance is 25 ohms. For more on my measurements, please see Testing Methods.

VERIFICATION OF MEASUREMENTS: I’m hoping to have the O2’s more critical measurements verified by someone independent with an Audio Precision, dScope, or similar equipment. If there are any measurements anyone is especially suspicious of, please let me know so I can make sure they are verified.

TECH SECTION SUMMARY: I won’t keep repeating myself except to say I’m very pleased with the O2’s measurements and I’m not aware of any portable amp, especially with the O2’s output voltage and current capability, that can beat it at for anywhere even close to the price. The next article covers the design process while the O2 Details covers everything else. It’s a lot to read but hopefully the headings will help folks skip the stuff they don’t really care about.

Creative Commons License This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.